login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050470
a(n) = Sum_{d|n, n/d == 1 (mod 4)} d^2 - Sum_{d|n, n/d == 3 (mod 4)} d^2.
20
1, 4, 8, 16, 26, 32, 48, 64, 73, 104, 120, 128, 170, 192, 208, 256, 290, 292, 360, 416, 384, 480, 528, 512, 651, 680, 656, 768, 842, 832, 960, 1024, 960, 1160, 1248, 1168, 1370, 1440, 1360, 1664, 1682, 1536, 1848, 1920, 1898, 2112, 2208, 2048, 2353, 2604
OFFSET
1,2
COMMENTS
Number 7 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Multiplicative because it is the Dirichlet convolution of A000290 = n^2 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005
LINKS
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
G.f.: Sum_{n>=1} n^2*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Michael Somos, Aug 08 2005: (Start)
Euler transform of period 4 sequence [ 4, -2, 4, -6, ...].
Expansion of eta(q^2)^6 * eta(q^4)^4 / eta(q)^4 in powers of q.
G.f.: x Product_{k>0} (1 + x^k)^4 * (1 - x^(2*k))^2 * (1 - x^(4*k))^4.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u - 8*v) * (v - 4*w) - v^2 * (v - 8*w)^2. (End)
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 + x^k) / (1 - x^k)^3. - Michael Somos, Sep 02 2005
Expansion of q * phi(q)^2 * psi(q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 15 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A120030.
a(n) = A050461(n) - A050465(n). - Reinhard Zumkeller, Mar 06 2012
Multiplicative with a(p^e) = ((p^2)^(e+1) - Chi(p)^(e+1))/(p^2 - Chi(p)), Chi = A101455. - Jianing Song, Oct 30 2019
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Pi^3/32 (A153071). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^2*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024
EXAMPLE
G.f. = q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + 32*q^6 + 48*q^7 + 64*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^2]^3 (QPochhammer[ q^4] / QPochhammer[ q])^2)^2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q]^2 / 4)^2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[n/d, 2] (-1)^Quotient[n/d, 2], {d, Divisors@n}]]; (* Michael Somos, May 17 2015 *)
s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
f[p_, e_] := (p^(2*e+2) - s[p]^(e+1))/(p^2 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * (n/d%2) * (-1)^(n/d\2)))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * (eta(x^4 + A) / eta(x + A))^4, n))}; /* Michael Somos, May 17 2015 */
(Haskell)
a050470 n = a050461 n - a050465 n -- Reinhard Zumkeller, Mar 06 2012
(Magma) Basis( ModularForms( Gamma1(4), 3), 51) [2]; /* Michael Somos, May 17 2015 */
(Python)
from math import prod
from sympy import factorint
def A050470(n): return prod((p**(e+1<<1)-(m:=(0, 1, 0, -1)[p&3]))//(p**2-m) for p, e in factorint(n).items()) # Chai Wah Wu, Jun 21 2024
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, Dec 23 1999
STATUS
approved