login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138507
Expansion of (f(q)^5 / f(q^5) - 1) / 5 in powers of q where f() is a Ramanujan theta function.
1
1, 1, -2, -3, 1, -2, -6, 5, 7, 1, 12, 6, -12, -6, -2, -11, -16, 7, 20, -3, 12, 12, -22, -10, 1, -12, -20, 18, 30, -2, 32, 21, -24, -16, -6, -21, -36, 20, 24, 5, 42, 12, -42, -36, 7, -22, -46, 22, 43, 1, 32, 36, -52, -20, 12, -30, -40, 30, 60, 6, 62, 32, -42, -43, -12, -24, -66, 48, 44, -6, 72, 35, -72, -36, -2, -60, -72, 24
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative with a(2^e) = ((-2)^(e+1) - 1) / 3, a(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 7 (mod 10), a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10).
G.f.: (Product_{k>0} (1 - (-x)^k)^5 / (1 - (-x)^(5*k)) - 1) / 5.
L.g.f.: log(1/(1 - x/(1 + x^2/(1 - x^3/(1 + x^4/(1 - x^5/(1 + ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(15*sqrt(5)) = 0.294254... . - Amiram Eldar, Jan 29 2024
EXAMPLE
q + q^2 - 2*q^3 - 3*q^4 + q^5 - 2*q^6 - 6*q^7 + 5*q^8 + 7*q^9 + ...
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, d * kronecker(5, d)))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(-x + A)^5 / eta(-x^5 + A) - 1) / 5, n))}
CROSSREFS
-(-1)^n * A109091(n) = a(n). A138506(n) = 5 * a(n) unless n=0.
Sequence in context: A128255 A154948 A109091 * A209579 A205699 A109200
KEYWORD
sign,mult
AUTHOR
Michael Somos, Mar 21 2008
STATUS
approved