login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337446
E.g.f.: exp(2*x) * (BesselI(0,2*x) - BesselI(1,2*x)) / (sec(x) + tan(x)).
0
1, 0, 1, 0, 3, -9, 5, -235, 35, -5939, 10773, -199746, 961521, -10506833, 82135911, -836458064, 8282576627, -90730736923, 1034615625645, -12538466040640, 159529541334325, -2133316798885373, 29875632576041747, -437461119834677379, 6683837093985315589
OFFSET
0,5
COMMENTS
Inverse boustrophedon transform of Catalan numbers.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000108(k) * A000111(n-k).
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[2 x] (BesselI[0, 2 x] - BesselI[1, 2 x])/(Sec[x] + Tan[x]), {x, 0, nmax}], x] Range[0, nmax]!
t[n_, 0] := CatalanNumber[n]; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 24}]
PROG
(Python)
from itertools import islice, count, accumulate
from operator import sub
def A337446_gen(): # generator of terms
blist, c = tuple(), 1
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist), func=sub, initial=c)))[-1]
c = c*(4*i+2)//(i+2)
A337446_list = list(islice(A337446_gen(), 30)) # Chai Wah Wu, Jun 11 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 27 2020
STATUS
approved