login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000753
Boustrophedon transform of Catalan numbers.
8
1, 2, 5, 16, 59, 243, 1101, 5461, 29619, 175641, 1137741, 8031838, 61569345, 510230087, 4549650423, 43452408496, 442620720531, 4790322653809, 54893121512453, 663974736739232, 8453986695437957, 113021461431438475
OFFSET
0,2
LINKS
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{k=0..n} A109449(n,k)*A000108(k). - Reinhard Zumkeller, Nov 05 2013
E.g.f.: (sec(x) + tan(x))*exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * exp(Pi) * (BesselI(0, Pi) - BesselI(1, Pi)) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Oct 30 2014
MATHEMATICA
CoefficientList[Series[E^(2*x) * (BesselI[0, 2*x] - BesselI[1, 2*x]) * (Sec[x] + Tan[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2014 after Sergei N. Gladkovskii *)
PROG
(Haskell)
a000753 n = sum $ zipWith (*) (a109449_row n) a000108_list
-- Reinhard Zumkeller, Nov 05 2013
(Python)
from itertools import accumulate, count, islice
def A000753_gen(): # generator of terms
blist, c = tuple(), 1
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist), initial=c)))[-1]
c = c*(4*i+2)//(i+2)
A000753_list = list(islice(A000753_gen(), 30)) # Chai Wah Wu, Jun 11 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved