login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Boustrophedon transform of Catalan numbers.
8

%I #37 Jun 11 2022 15:33:05

%S 1,2,5,16,59,243,1101,5461,29619,175641,1137741,8031838,61569345,

%T 510230087,4549650423,43452408496,442620720531,4790322653809,

%U 54893121512453,663974736739232,8453986695437957,113021461431438475

%N Boustrophedon transform of Catalan numbers.

%H Reinhard Zumkeller, <a href="/A000753/b000753.txt">Table of n, a(n) for n = 0..400</a>

%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F a(n) = Sum_{k=0..n} A109449(n,k)*A000108(k). - _Reinhard Zumkeller_, Nov 05 2013

%F E.g.f.: (sec(x) + tan(x))*exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - _Sergei N. Gladkovskii_, Oct 30 2014

%F a(n) ~ n! * exp(Pi) * (BesselI(0, Pi) - BesselI(1, Pi)) * 2^(n+2) / Pi^(n+1). - _Vaclav Kotesovec_, Oct 30 2014

%t CoefficientList[Series[E^(2*x) * (BesselI[0,2*x] - BesselI[1,2*x]) * (Sec[x] + Tan[x]),{x,0,20}],x] * Range[0,20]! (* _Vaclav Kotesovec_, Oct 30 2014 after _Sergei N. Gladkovskii_ *)

%o (Haskell)

%o a000753 n = sum $ zipWith (*) (a109449_row n) a000108_list

%o -- _Reinhard Zumkeller_, Nov 05 2013

%o (Python)

%o from itertools import accumulate, count, islice

%o def A000753_gen(): # generator of terms

%o blist, c = tuple(), 1

%o for i in count(0):

%o yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]

%o c = c*(4*i+2)//(i+2)

%o A000753_list = list(islice(A000753_gen(),30)) # _Chai Wah Wu_, Jun 11 2022

%Y Cf. A000108, A000736, A109449.

%K nonn

%O 0,2

%A _N. J. A. Sloane_