login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000751
Boustrophedon transform of partition numbers.
5
1, 2, 5, 14, 42, 143, 555, 2485, 12649, 72463, 461207, 3229622, 24671899, 204185616, 1819837153, 17378165240, 177012514388, 1915724368181, 21952583954117, 265533531724484, 3380877926676504, 45199008472762756
OFFSET
0,2
LINKS
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{k=0..n} A109449(n,k)*A000041(k). - Reinhard Zumkeller, Nov 03 2013
EXAMPLE
The array begins:
1
1 -> 2
5 <- 4 <- 2
3 -> 8 -> 12 -> 14
42 <- 39 <- 31 <- 19 <- 5
- John Cerkan, Jan 26 2017
MATHEMATICA
t[n_, 0] := PartitionsP[n]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Haskell)
a000751 n = sum $ zipWith (*) (a109449_row n) a000041_list
-- Reinhard Zumkeller, Nov 03 2013
(Python)
from itertools import accumulate, count, islice
from sympy import npartitions
def A000751_gen(): # generator of terms
blist = tuple()
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist), initial=npartitions(i))))[-1]
A000751_list = list(islice(A000751_gen(), 40)) # Chai Wah Wu, Jun 12 2022
CROSSREFS
Sequence in context: A149877 A149878 A148332 * A000744 A047046 A063545
KEYWORD
nonn
STATUS
approved