login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350717
a(n) = 4*a(n-1) - n - 1, for n > 0, a(0) = 1.
0
1, 2, 5, 16, 59, 230, 913, 3644, 14567, 58258, 233021, 932072, 3728275, 14913086, 59652329, 238609300, 954437183, 3817748714, 15270994837, 61083979328, 244335917291, 977343669142, 3909374676545, 15637498706156, 62549994824599, 250199979298370, 1000799917193453, 4003199668773784
OFFSET
0,2
COMMENTS
Last digit (using 0 to 9) is of period 10: repeat [1, 2, 5, 6, 9, 0, 3, 4, 7, 8].
FORMULA
a(n) = (2^(2*n+1) + 3*n + 7)/9.
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3), n >= 3.
a(n) = a(n-1) + A007583(n-1).
a(n) = 2*a(n-1) + A014825(n-1).
G.f.: (-2*x^2 + 4*x - 1)/((x - 1)^2*(4*x - 1)). - Thomas Scheuerle, Feb 03 2022
a(n) = -1 + 5*a(n-1) - 4*a(n-2), n >= 2.
a(n) = 1 + A160156(n-1), n >= 1.
MATHEMATICA
LinearRecurrence[{6, -9, 4}, {1, 2, 5}, 28] (* Amiram Eldar, Feb 03 2022 *)
PROG
(PARI) a(n) = if (n, 4*a(n-1) - n - 1, 1); \\ Michel Marcus, Feb 03 2022
(Python)
print([(2**(2*n+1) + 3*n + 7)//9 for n in range(30)])
# Gennady Eremin, Feb 05 2022
CROSSREFS
Cf. A007583 (first differences), A014825, A160156.
Sequence in context: A243326 A185143 A280760 * A000753 A346813 A007878
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 03 2022
EXTENSIONS
More terms from Michel Marcus, Feb 03 2022
STATUS
approved