login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000756
Boustrophedon transform of sequence 1,1,0,0,0,0,...
1
1, 2, 3, 5, 13, 41, 157, 699, 3561, 20401, 129881, 909523, 6948269, 57504201, 512516565, 4894172027, 49851629137, 539521049441, 6182455849009, 74781598946211, 952148890494165, 12729293006112121, 178281831561868013
OFFSET
0,2
LINKS
S. N. Gladkovskii, Continued fraction expansion for function sec(x) + tan(x), arXiv:1208.2243v1 [math.HO], 2012.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
N. J. A. Sloane, Transforms.
FORMULA
E.g.f.: (1 + x)*(tan(x) + sec(x)).
From Sergei N. Gladkovskii Dec 03 2012 (Start)
E.g.f.: (1 + x)*(1 + x/U(0)); U(k) = 4*k + 1 - x/(2 - x/(4*k + 3 + x/(2 + x/U(k+1) ))); (continued fraction, 4-step).
E.g.f.: (1 + x)*(1 + 2*x/(U(0) - x)), where U(k) = 4*k + 2 - x^2/U(k+1); (continued fraction, 1-step). (End)
a(n) ~ n! * (Pi + 2)*(2/Pi)^(n+1). - Vaclav Kotesovec, Oct 02 2013
For n > 0: a(n) = A000111(n) + n*A000111(n-1). - Reinhard Zumkeller, Nov 03 2013
MATHEMATICA
CoefficientList[Series[(1+x)*(Tan[x]+1/Cos[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
t[n_, 0] := If[n < 2, 1, 0]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
def A000756_list(n) :
R = []; A = {-1:1, 0:1}; k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) : Am += A[k]; A[k] = Am; k += e
R.append(A[-i//2] if i%2 == 0 else A[i//2])
return R
A000756_list(22) # Peter Luschny, May 27 2012
(PARI)
x='x+O('x^66);
Vec(serlaplace((1+x)*(tan(x)+ 1/cos(x))))
/* Joerg Arndt, May 28 2012 */
(Haskell)
a000756 n = sum $ zipWith (*) (a109449_row n) (1 : 1 : [0, 0 ..])
-- Reinhard Zumkeller, Nov 03 2013
(Python)
from itertools import islice, accumulate
def A000756_gen(): # generator of terms
yield from (1, 2)
blist = (1, 2)
while True:
yield (blist:=tuple(accumulate(reversed(blist), initial=0)))[-1]
A000756_list = list(islice(A000756_gen(), 40)) # Chai Wah Wu, Jun 09-11 2022
CROSSREFS
Cf. A109449.
Sequence in context: A038560 A240838 A238814 * A192241 A093999 A042445
KEYWORD
nonn
STATUS
approved