Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Jun 11 2022 11:44:13
%S 1,2,3,5,13,41,157,699,3561,20401,129881,909523,6948269,57504201,
%T 512516565,4894172027,49851629137,539521049441,6182455849009,
%U 74781598946211,952148890494165,12729293006112121,178281831561868013
%N Boustrophedon transform of sequence 1,1,0,0,0,0,...
%H Reinhard Zumkeller, <a href="/A000756/b000756.txt">Table of n, a(n) for n = 0..400</a>
%H S. N. Gladkovskii, <a href="http://arxiv.org/abs/1208.2243">Continued fraction expansion for function sec(x) + tan(x)</a>, arXiv:1208.2243v1 [math.HO], 2012.
%H S. N. Gladkovskii, <a href="https://www.researchgate.net/publication/232870963">On the continued fraction expansion for functions 1/sin(x) + cot(x) and sec(x) + tan(x)</a>, 2012.
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>.
%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H Ludwig Seidel, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1877_0157-0187.pdf">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through <a href="https://de.wikipedia.org/wiki/ZOBODAT">ZOBODAT</a>]
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>.
%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%F E.g.f.: (1 + x)*(tan(x) + sec(x)).
%F From _Sergei N. Gladkovskii_ Dec 03 2012 (Start)
%F E.g.f.: (1 + x)*(1 + x/U(0)); U(k) = 4*k + 1 - x/(2 - x/(4*k + 3 + x/(2 + x/U(k+1) ))); (continued fraction, 4-step).
%F E.g.f.: (1 + x)*(1 + 2*x/(U(0) - x)), where U(k) = 4*k + 2 - x^2/U(k+1); (continued fraction, 1-step). (End)
%F a(n) ~ n! * (Pi + 2)*(2/Pi)^(n+1). - _Vaclav Kotesovec_, Oct 02 2013
%F For n > 0: a(n) = A000111(n) + n*A000111(n-1). - _Reinhard Zumkeller_, Nov 03 2013
%t CoefficientList[Series[(1+x)*(Tan[x]+1/Cos[x]), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 02 2013 *)
%t t[n_, 0] := If[n < 2, 1, 0]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *)
%o (Sage) # Algorithm of L. Seidel (1877)
%o def A000756_list(n) :
%o R = []; A = {-1:1, 0:1}; k = 0; e = 1
%o for i in (0..n) :
%o Am = 0; A[k + e] = 0; e = -e
%o for j in (0..i) : Am += A[k]; A[k] = Am; k += e
%o R.append(A[-i//2] if i%2 == 0 else A[i//2])
%o return R
%o A000756_list(22) # Peter Luschny, May 27 2012
%o (PARI)
%o x='x+O('x^66);
%o Vec(serlaplace((1+x)*(tan(x)+ 1/cos(x))))
%o /* _Joerg Arndt_, May 28 2012 */
%o (Haskell)
%o a000756 n = sum $ zipWith (*) (a109449_row n) (1 : 1 : [0, 0 ..])
%o -- _Reinhard Zumkeller_, Nov 03 2013
%o (Python)
%o from itertools import islice, accumulate
%o def A000756_gen(): # generator of terms
%o yield from (1,2)
%o blist = (1,2)
%o while True:
%o yield (blist:=tuple(accumulate(reversed(blist),initial=0)))[-1]
%o A000756_list = list(islice(A000756_gen(),40)) # _Chai Wah Wu_, Jun 09-11 2022
%Y Cf. A109449.
%K nonn
%O 0,2
%A _N. J. A. Sloane_