login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238814 Primes p with prime(p) - p + 1 and prime(q) - q + 1 both prime, where q is the first prime after p. 3
2, 3, 5, 13, 41, 83, 199, 211, 271, 277, 293, 307, 349, 661, 709, 743, 751, 823, 907, 1117, 1447, 1451, 1741, 1747, 2203, 2371, 2803, 2819, 2861, 2971, 3011, 3251, 3299, 3329, 3331, 3691, 3877, 4021, 4027, 4049, 4051, 4093, 4129, 4157, 4447, 4513, 4549, 4561, 4751, 4801, 5179, 5479, 5519, 5657, 5813, 6007, 6011, 6571, 7057, 7129 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: The sequence is infinite, in other words, A234695 contains infinitely many consecutive prime pairs prime(k) and prime(k+1).

This is motivated by the comments in A238766 and A238776, and the sequence is a subsequence of A234695.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.

EXAMPLE

a(1) = 2 since prime(2) - 2 + 1 = 3 - 1 = 2 and prime(3) - 3 + 1 = 5 - 2 = 3 are both prime.

a(2) = 3 since prime(3) - 3 + 1 = 5 - 2 = 3 and prime(5) - 5 + 1 = 11 - 4 = 7 are both prime.

MATHEMATICA

p[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1]

n=0

Do[If[p[k]&&p[k+1], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 914}]

Select[Prime[Range[1000]], AllTrue[{Prime[#]-#+1, Prime[NextPrime[#]]-NextPrime[ #]+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 24 2019 *)

PROG

(PARI) step(p, k)=k++; while(k--, p=nextprime(p+1)); p

p=0; forprime(r=2, 1e6, if(isprime(p++) && isprime(r-p+1), q=nextprime(p+1); if(isprime(step(r, q-p)-q+1), print1(p", ")))) \\ Charles R Greathouse IV, Mar 06 2014

CROSSREFS

Cf. A000040, A234694, A234695, A238766, A238776.

Sequence in context: A087362 A038560 A240838 * A000756 A192241 A093999

Adjacent sequences:  A238811 A238812 A238813 * A238815 A238816 A238817

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Mar 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 20:33 EST 2020. Contains 331288 sequences. (Running on oeis4.)