OFFSET
0,6
FORMULA
T(0,k) = 0, T(1,k) = 1 and T(n,k) = ((2*n-1)^k+(2*n+1)^k) * T(n-1,k) - (2*n-1)^(2*k) * T(n-2, k) for n>1.
EXAMPLE
Square array begins:
0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, ...
2, 8, 34, 152, 706, ...
3, 71, 1891, 55511, 1745731, ...
4, 744, 164196, 41625144, 11575291716, ...
MATHEMATICA
T[n_, k_] := ((2*n + 1)!!)^k * Sum[1/(2*j + 1)^k, {j, 1, n}]; Table[T[k, n - k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
PROG
(PARI) {T(n, k) = prod(j=1, n, 2*j+1)^k*sum(j=1, n, 1/(2*j+1)^k)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 12 2020
STATUS
approved