login
A335095
Square array T(n,k), n>=0, k>=0, read by antidiagonals: T(n,k) = ((2n+1)!!)^k * Sum_{j=1..n} 1/(2*j+1)^k.
5
0, 0, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 34, 71, 4, 0, 1, 152, 1891, 744, 5, 0, 1, 706, 55511, 164196, 9129, 6, 0, 1, 3368, 1745731, 41625144, 20760741, 129072, 7, 0, 1, 16354, 57365351, 11575291716, 56246975289, 3616621254, 2071215, 8
OFFSET
0,6
FORMULA
T(0,k) = 0, T(1,k) = 1 and T(n,k) = ((2*n-1)^k+(2*n+1)^k) * T(n-1,k) - (2*n-1)^(2*k) * T(n-2, k) for n>1.
EXAMPLE
Square array begins:
0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, ...
2, 8, 34, 152, 706, ...
3, 71, 1891, 55511, 1745731, ...
4, 744, 164196, 41625144, 11575291716, ...
MATHEMATICA
T[n_, k_] := ((2*n + 1)!!)^k * Sum[1/(2*j + 1)^k, {j, 1, n}]; Table[T[k, n - k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
PROG
(PARI) {T(n, k) = prod(j=1, n, 2*j+1)^k*sum(j=1, n, 1/(2*j+1)^k)}
CROSSREFS
Column k=0..4 give A001477, A334670, A335090, A335091, A335092.
Rows n=0-2 give: A000004, A000012, A074606.
Main diagonal gives A335096.
Cf. A291656.
Sequence in context: A309993 A248673 A278881 * A344069 A337444 A340556
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 12 2020
STATUS
approved