

A055141


Matrix inverse of triangle A055140.


2



1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 36, 32, 12, 0, 1, 224, 180, 80, 20, 0, 1, 1880, 1344, 540, 160, 30, 0, 1, 19872, 13160, 4704, 1260, 280, 42, 0, 1, 251888, 158976, 52640, 12544, 2520, 448, 56, 0, 1, 3712256, 2266992
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

T is an example of the group of matrices outlined in the table in A132382the associated matrix for aC(1,1). The e.g.f. for the row polynomials is exp(x*t) * exp(x) * (12*x)^(1/2). T(n,k) = Binomial(n,k)* s(nk) where s = A055142 with an e.g.f. of exp(x) * (12*x)^(1/2) which is the reciprocal of the e.g.f. of A053871. The row polynomials form an Appell sequence. [From Tom Copeland, Sep 11 2008]


LINKS

Table of n, a(n) for n=0..46.


FORMULA

a(n, k) = A053142(nk)*C(n, k).


EXAMPLE

1; 0,1; 2,0,1; 8,6,0,1; 36,32,12,0,1; ...


CROSSREFS

Sequence in context: A248673 A278881 A201637 * A055140 A191936 A327090
Adjacent sequences: A055138 A055139 A055140 * A055142 A055143 A055144


KEYWORD

sign,tabl


AUTHOR

Christian G. Bower, May 09 2000


STATUS

approved



