login
A055141
Matrix inverse of triangle A055140.
2
1, 0, 1, -2, 0, 1, -8, -6, 0, 1, -36, -32, -12, 0, 1, -224, -180, -80, -20, 0, 1, -1880, -1344, -540, -160, -30, 0, 1, -19872, -13160, -4704, -1260, -280, -42, 0, 1, -251888, -158976, -52640, -12544, -2520, -448, -56, 0, 1, -3712256, -2266992
OFFSET
0,4
COMMENTS
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for aC(1,1). The e.g.f. for the row polynomials is exp(x*t) * exp(x) * (1-2*x)^(1/2). T(n,k) = Binomial(n,k)* s(n-k) where s = A055142 with an e.g.f. of exp(x) * (1-2*x)^(1/2) which is the reciprocal of the e.g.f. of A053871. The row polynomials form an Appell sequence. [From Tom Copeland, Sep 11 2008]
FORMULA
a(n, k) = A053142(n-k)*C(n, k).
EXAMPLE
1; 0,1; -2,0,1; -8,-6,0,1; -36,-32,-12,0,1; ...
CROSSREFS
Sequence in context: A337444 A340556 A201637 * A055140 A335330 A191936
KEYWORD
sign,tabl
AUTHOR
Christian G. Bower, May 09 2000
STATUS
approved