login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191936
Triangle read by rows of Legendre-Stirling numbers of the first kind.
3
1, 1, 0, 1, -2, 0, 1, -8, 12, 0, 1, -20, 108, -144, 0, 1, -40, 508, -2304, 2880, 0, 1, -70, 1708, -17544, 72000, -86400, 0, 1, -112, 4648, -89280, 808848, -3110400, 3628800, 0, 1, -168, 10920, -349568, 5808528, -48405888, 177811200, -203212800, 0
OFFSET
1,5
COMMENTS
Apparently this is the mirror of triangle A129467. - Omar E. Pol, Jan 10 2012
LINKS
G. E. Andrews, W. Gawronski and L. L. Littlejohn, The Legendre-Stirling Numbers
G. E. Andrews et al., The Legendre-Stirling numbers, Discrete Math., 311 (2011), 1255-1272.
FORMULA
T(n, k) = ps(n-1, n-k), where ps(n, k) = ps(n-1, k-1) - n*(n-1)*ps(n-1, k), ps(n, 0) = 0, and ps(n, n) = 1. - G. C. Greubel, Jun 07 2021
EXAMPLE
Triangle begins:
1;
1, 0;
1, -2, 0;
1, -8, 12, 0;
1, -20, 108, -144, 0;
1, -40, 508, -2304, 2880, 0;
1, -70, 1708, -17544, 72000, -86400, 0;
1, -112, 4648, -89280, 808848, -3110400, 3628800, 0;
...
MATHEMATICA
ps[n_, k_]:= ps[n, k]= If[k==n, 1, If[k==0, 0, ps[n-1, k-1] - n*(n-1)*ps[n-1, k]]];
Table[ps[n-1, n-k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
PROG
(Sage)
@CachedFunction
def ps(n, k):
if (k==n): return 1
elif (k==0): return 0
else: return ps(n-1, k-1) - n*(n-1)*ps(n-1, k)
flatten([[ps(n-1, n-k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 07 2021
CROSSREFS
Cf. A191935.
Sequence in context: A055141 A055140 A335330 * A327090 A021836 A255306
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Jun 19 2011
EXTENSIONS
More terms from Omar E. Pol, Jan 10 2012
STATUS
approved