login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129467
Orthogonal polynomials with all zeros integers from 2*A000217.
12
1, 0, 1, 0, -2, 1, 0, 12, -8, 1, 0, -144, 108, -20, 1, 0, 2880, -2304, 508, -40, 1, 0, -86400, 72000, -17544, 1708, -70, 1, 0, 3628800, -3110400, 808848, -89280, 4648, -112, 1, 0, -203212800, 177811200, -48405888, 5808528, -349568, 10920, -168, 1, 0, 14631321600, -13005619200, 3663035136, -466619904, 30977424, -1135808, 23016, -240, 1
OFFSET
0,5
COMMENTS
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^k have the n integer zeros 2*A000217(j), j=0..n-1.
The row polynomials satisfy a three-term recurrence relation which qualify them as orthogonal polynomials w.r.t. some (as yet unknown) positive measure.
Column sequences (without leading zeros) give A000007, A010790(n-1)*(-1)^(n-1), A084915(n-1)*(-1)^(n-2), A130033 for m=0..3.
Apparently this is the triangle read by rows of Legendre-Stirling numbers of the first kind. See the Andrews-Gawronski-Littlejohn paper, table 2. The mirror version is the triangle A191936. - Omar E. Pol, Jan 10 2012
LINKS
G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 14.
Wolfdieter Lang, First ten rows and more.
FORMULA
Row polynomials p(n,x) = Product_{m=1..n} (x - m*(m-1)), n>=1, with p(0,x) = 1.
Row polynomials p(n,x) = p(n, v=n, x) with the recurrence: p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x)) with p(-1,v,x) = 0 and p(0,v,x) = 1.
T(n, k) = [x^k] p(n, n, x), n >= k >= 0, otherwise 0.
T(n, k) = Sum_{j=0..2*(n-k)} ( binomial(2*k+j, j)*s(n,k)*n^j ) - Sum_{j=k+1..n} binomial(j, 2*(j-k))*T(n, j) (See Coffey and Lettington formula (4.7)). - G. C. Greubel, Feb 09 2024
EXAMPLE
Triangle starts:
1;
0, 1;
0, -2, 1;
0, 12, -8, 1;
0, -144, 108, -20, 1;
0, 2880, -2304, 508, -40, 1;
...
n=3: [0,12,-8,1]. p(3,x) = x*(12-8*x+x^2) = x*(x-2)*(x-6).
n=5: [0,2880,-2304,508,-40,1]. p(5,x) = x*(2880-2304*x+508*x^2-40*x^3 +x^4) = x*(x-2)*(x-6)*(x-12)*(x-20).
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-m) -(m-1))*T[n-1, k, m] -((n-1)*(n-m-1))^2*T[n-2, k, m] +T[n-1, k-1, m]]]; (* T=A129467 *)
Table[T[n, k, n], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 09 2024 *)
PROG
(Magma)
f:= func< n, k | (&+[Binomial(2*k+j, j)*StirlingFirst(2*n, 2*k+j)*n^j: j in [0..2*(n-k)]]) >;
function T(n, k) // T = A129467
if k eq n then return 1;
else return f(n, k) - (&+[Binomial(j, 2*(j-k))*T(n, j): j in [k+1..n]]);
end if;
end function;
[[T(n, k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 09 2024
(SageMath)
@CachedFunction
def f(n, k): return sum(binomial(2*k+j, j)*(-1)^j*stirling_number1(2*n, 2*k+j)*n^j for j in range(2*n-2*k+1))
def T(n, k): # T = A129467
if n==0: return 1
else: return - sum(binomial(j, 2*j-2*k)*T(n, j) for j in range(k+1, n+1)) + f(n, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 09 2024
CROSSREFS
Cf. A129462 (v=2 member), A129065 (v=1 member), A191936 (row reversed?).
Cf. A000217, A130031 (row sums), A130032 (unsigned row sums), A191936.
Column sequences (without leading zeros): A000007 (k=0), (-1)^(n-1)*A010790(n-1) (k=1), (-1)^n*A084915(n-1) (k=2), A130033 (k=3).
Cf. A008275.
Sequence in context: A268435 A039910 A352399 * A129065 A361718 A355565
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, May 04 2007
STATUS
approved