login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129468
Unitary abundance of n.
8
-1, -1, -2, -3, -4, 0, -6, -7, -8, -2, -10, -4, -12, -4, -6, -15, -16, -6, -18, -10, -10, -8, -22, -12, -24, -10, -26, -16, -28, 12, -30, -31, -18, -14, -22, -22, -36, -16, -22, -26, -40, 12, -42, -28, -30, -20, -46, -28, -48, -22, -30, -34, -52, -24
OFFSET
1,3
COMMENTS
The values of n which generate negative elements of this sequence are in A129487, the values of n which generate the zeros of this sequence are in A002827 and the values of n which generate positive elements of this sequence are in A034683
LINKS
Eric Weisstein's World of Mathematics, Unitary Divisor.
FORMULA
a(n) = A034460(n) - n = A034448(n) - 2n.
From Amiram Eldar, Apr 06 2024: (Start)
a(A129487(n)) < 0.
a(A002827(n)) = 0.
a(A034683(n)) > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(2*zeta(3)) - 1 = -0.3157836111... . (End)
EXAMPLE
As the unitary divisors of 12 are 1, 3, 4 and 12, which sum to 20, then a(12) = 20 - 2*12 = -4.
MAPLE
A129468 := proc(n)
A034448(n)-2*n ;
end proc:
seq(A129468(n), n=1..40) ; # R. J. Mathar, Nov 10 2014
MATHEMATICA
UnitaryDivisors[n_Integer?Positive] := Select[Divisors[n], GCD[ #, n/# ] == 1&]; sstar[n_] := Plus@@UnitaryDivisors[n] - n; sstar[ # ] - # &/@ Range[40]
a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - 2*n; a[1] = -1; Array[a, 100] (* Amiram Eldar, Apr 06 2024 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]) - 2*n; } \\ Amiram Eldar, Apr 06 2024
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Ant King, Apr 17 2007
STATUS
approved