OFFSET
1,6
COMMENTS
Let rad(k) = A007947(k), the squarefree kernel of k.
Let T(n) be row n of this sequence and let S(n) be row n of A133995.
T(n) contains numbers k < n such that k and n share at least one prime factor p, but not all distinct prime p | n.
T(n) is a superset of S(n), since S(n) does not contain any divisor d | n, while T(n) allows d | n such that rad(d) != rad(n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11873 (rows n = 1..250, flattened)
FORMULA
T(n) = { k < n : 1 < gcd(k,n), rad(k) != rad(n) }.
T(n) = S(n) \ { k : k | n, rad(k) = rad(n) }.
For prime p, T(p) = {}, but we write 0 to signify the empty set.
T(4) = 0, since k < 4 is either coprime to 4 or rad(k) = 2.
EXAMPLE
Table begins:
n row n
---------------------------
1: 0;
2: 0;
3: 0;
4: 0;
5: 0;
6: 2, 3, 4;
7: 0;
8: 6;
9: 6;
10: 2, 4, 5, 6, 8;
11: 0;
12: 2, 3, 4, 8, 9, 10;
13: 0;
14: 2, 4, 6, 7, 8, 10, 12;
15: 3, 5, 6, 9, 10, 12;
16: 6, 10, 12, 14;
MATHEMATICA
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]
CROSSREFS
KEYWORD
nonn,tabf,easy,new
AUTHOR
Michael De Vlieger, Feb 14 2025
STATUS
approved