login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268435
Triangle read by rows, T(n,k) = RF(n-k+1,n-k)*S2(n,k) where RF denotes the rising factorial and S2 the Stirling set numbers, for n>=0 and 0<=k<=n.
2
1, 0, 1, 0, 2, 1, 0, 12, 6, 1, 0, 120, 84, 12, 1, 0, 1680, 1800, 300, 20, 1, 0, 30240, 52080, 10800, 780, 30, 1, 0, 665280, 1905120, 505680, 42000, 1680, 42, 1, 0, 17297280, 84490560, 29211840, 2857680, 126000, 3192, 56, 1
OFFSET
0,5
FORMULA
T(n,k) = binomial(n,k)*Sum_{i=0..k} binomial(k,i)*A268437(n-k,i).
T(n,k) = binomial(-k,-n)*Sum_{i=0..n-k} binomial(-n,i)*A268438(n-k,i).
T(n,k) = 4^(n-k)*Gamma(n-k+1/2)*A048993(n,k)/sqrt(Pi).
T(n,1) = (2*n-2)!/(n-1)! for n>=1.
T(n,n-1) = (n-1)*n for n>=1.
Recurrence: T(n,k) = 1 if k=n; 0 if k=0; otherwise k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1).
EXAMPLE
[1]
[0, 1]
[0, 2, 1]
[0, 12, 6, 1]
[0, 120, 84, 12, 1]
[0, 1680, 1800, 300, 20, 1]
[0, 30240, 52080, 10800, 780, 30, 1]
[0, 665280, 1905120, 505680, 42000, 1680, 42, 1]
MAPLE
T := (n, k) -> pochhammer(n-k+1, n-k)*Stirling2(n, k):
for n from 0 to 9 do seq(T(n, k), k=0..n) od;
# Alternatively:
T := proc(n, k) option remember;
`if`( n=k, 1,
`if`( k=0, 0,
k*(4*(n-k)-2)*T(n-1, k)+T(n-1, k-1))) end:
for n from 0 to 7 do seq(T(n, k), k=0..n) od;
MATHEMATICA
T[n_, k_] := Pochhammer[n-k+1, n-k] StirlingS2[n, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
PROG
(Sage)
A268435 = lambda n, k: rising_factorial(n-k+1, n-k)*stirling_number2(n, k)
[[A268435(n, k) for k in (0..n)] for n in range(8)]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 07 2016
STATUS
approved