login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268432
a(n) = Pochhammer(n+1, n)/Clausen(n, 1) = A001813(n) / A160014(n, 1).
2
1, 1, 2, 60, 56, 15120, 15840, 8648640, 17297280, 8821612800, 10158220800, 14079294028800, 474467051520, 32382376266240000, 582882772792320000, 101421602465863680000, 24659370011308032000, 415017197290314178560000, 72810034612335820800000, 2149789081963827444940800000
OFFSET
0,3
FORMULA
Let b(n) = Pochhammer(n+1,n)/denominator(Bernoulli(n)) then a(2*n) = b(2*n) for n >= 0 and 2*a(2*n+1) = b(2*n+1) for n >= 1 by the von Staudt-Clausen theorem.
MAPLE
a := proc(n) numtheory[divisors](n); map(i->i+1, %);
iquo(mul(4*k+2, k in (0..n-1)), mul(k, k in select(isprime, %))) end:
seq(a(n), n=0..19);
PROG
(Sage)
def A268432(n):
if n <= 1: return 1
r = rising_factorial(n+1, n)//bernoulli(n).denominator()
return r if is_even(n) else r//2
[A268432(n) for n in range(20)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 14 2016
STATUS
approved