Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 29 2019 02:17:06
%S 1,1,2,60,56,15120,15840,8648640,17297280,8821612800,10158220800,
%T 14079294028800,474467051520,32382376266240000,582882772792320000,
%U 101421602465863680000,24659370011308032000,415017197290314178560000,72810034612335820800000,2149789081963827444940800000
%N a(n) = Pochhammer(n+1, n)/Clausen(n, 1) = A001813(n) / A160014(n, 1).
%F Let b(n) = Pochhammer(n+1,n)/denominator(Bernoulli(n)) then a(2*n) = b(2*n) for n >= 0 and 2*a(2*n+1) = b(2*n+1) for n >= 1 by the von Staudt-Clausen theorem.
%p a := proc(n) numtheory[divisors](n); map(i->i+1, %);
%p iquo(mul(4*k+2,k in (0..n-1)), mul(k,k in select(isprime, %))) end:
%p seq(a(n), n=0..19);
%o (Sage)
%o def A268432(n):
%o if n <= 1: return 1
%o r = rising_factorial(n+1,n)//bernoulli(n).denominator()
%o return r if is_even(n) else r//2
%o [A268432(n) for n in range(20)]
%Y Cf. A001813, A027642, A160014, A264437.
%K nonn
%O 0,3
%A _Peter Luschny_, Feb 14 2016