OFFSET
0,2
COMMENTS
See the M. Bruschi et al. reference given in A129467.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
FORMULA
a(n) = A129467(n+3,3),n>=0.
a(n) = (-1)^n*det(PS(i+3,j+2), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951). - Mircea Merca, Apr 06 2013
a(n) = (-1)^n * ((n+2)!)^2 * (2*(n+2) - (n+3)*h(n+2, 2)), where h(n,k) = Sum_{j=1..n} 1/j^k is the generalized harmonic number. - G. C. Greubel, Feb 10 2024
EXAMPLE
a(3)=-det([20,1,0],[292,40,1],[3824,1092,70])=-17544. [Mircea Merca, Apr 06 2013]
MATHEMATICA
A130033[n_]:= (-1)^n*((n+2)!)^2*(2*(n+2) -(n+3)*HarmonicNumber[n+2, 2]);
Table[A130033[n], {n, 0, 30}] (* G. C. Greubel, Feb 10 2024 *)
PROG
(Magma)
h:= func< n, k | (&+[1/j^k : j in [1..n]]) >;
A130033:= func< n | (-1)^n*(Factorial(n+2))^2*(2*(n+2) - (n+3)*h(n+2, 2)) >;
[A130033(n): n in [0..30]]; // G. C. Greubel, Feb 10 2024
(SageMath)
def A130033(n): return (-1)^n*(factorial(n+2))^2*(2*(n+2) - (n+3)*(zeta(2) - psi(1, n+3)))
[A130033(n) for n in range(31)] # G. C. Greubel, Feb 10 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, May 04 2007
STATUS
approved