login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130033
Fourth (m=3) column sequence of triangle A129467.
3
1, -20, 508, -17544, 808848, -48405888, 3663035136, -342678781440, 38879803008000, -5263815891456000, 838682139211776000, -155393459730173952000, 33136711787903754240000, -8059211591488628981760000, 2217755736675770074398720000
OFFSET
0,2
COMMENTS
See the M. Bruschi et al. reference given in A129467.
LINKS
FORMULA
a(n) = A129467(n+3,3),n>=0.
a(n) = (-1)^n*det(PS(i+3,j+2), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951). - Mircea Merca, Apr 06 2013
a(n) = (-1)^n * ((n+2)!)^2 * (2*(n+2) - (n+3)*h(n+2, 2)), where h(n,k) = Sum_{j=1..n} 1/j^k is the generalized harmonic number. - G. C. Greubel, Feb 10 2024
EXAMPLE
a(3)=-det([20,1,0],[292,40,1],[3824,1092,70])=-17544. [Mircea Merca, Apr 06 2013]
MATHEMATICA
A130033[n_]:= (-1)^n*((n+2)!)^2*(2*(n+2) -(n+3)*HarmonicNumber[n+2, 2]);
Table[A130033[n], {n, 0, 30}] (* G. C. Greubel, Feb 10 2024 *)
PROG
(Magma)
h:= func< n, k | (&+[1/j^k : j in [1..n]]) >;
A130033:= func< n | (-1)^n*(Factorial(n+2))^2*(2*(n+2) - (n+3)*h(n+2, 2)) >;
[A130033(n): n in [0..30]]; // G. C. Greubel, Feb 10 2024
(SageMath)
def A130033(n): return (-1)^n*(factorial(n+2))^2*(2*(n+2) - (n+3)*(zeta(2) - psi(1, n+3)))
[A130033(n) for n in range(31)] # G. C. Greubel, Feb 10 2024
CROSSREFS
Cf. A010790 (m=1 column unsigned), A084915 (m=2 column unsigned).
Cf. A129467.
Sequence in context: A092087 A008270 A130186 * A250016 A371017 A337352
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, May 04 2007
STATUS
approved