login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fourth (m=3) column sequence of triangle A129467.
3

%I #21 Feb 10 2024 04:02:13

%S 1,-20,508,-17544,808848,-48405888,3663035136,-342678781440,

%T 38879803008000,-5263815891456000,838682139211776000,

%U -155393459730173952000,33136711787903754240000,-8059211591488628981760000,2217755736675770074398720000

%N Fourth (m=3) column sequence of triangle A129467.

%C See the M. Bruschi et al. reference given in A129467.

%H G. C. Greubel, <a href="/A130033/b130033.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = A129467(n+3,3),n>=0.

%F a(n) = (-1)^n*det(PS(i+3,j+2), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951). - _Mircea Merca_, Apr 06 2013

%F a(n) = (-1)^n * ((n+2)!)^2 * (2*(n+2) - (n+3)*h(n+2, 2)), where h(n,k) = Sum_{j=1..n} 1/j^k is the generalized harmonic number. - _G. C. Greubel_, Feb 10 2024

%e a(3)=-det([20,1,0],[292,40,1],[3824,1092,70])=-17544. [_Mircea Merca_, Apr 06 2013]

%t A130033[n_]:= (-1)^n*((n+2)!)^2*(2*(n+2) -(n+3)*HarmonicNumber[n+2,2]);

%t Table[A130033[n], {n,0,30}] (* _G. C. Greubel_, Feb 10 2024 *)

%o (Magma)

%o h:= func< n,k | (&+[1/j^k : j in [1..n]]) >;

%o A130033:= func< n | (-1)^n*(Factorial(n+2))^2*(2*(n+2) - (n+3)*h(n+2,2)) >;

%o [A130033(n): n in [0..30]]; // _G. C. Greubel_, Feb 10 2024

%o (SageMath)

%o def A130033(n): return (-1)^n*(factorial(n+2))^2*(2*(n+2) - (n+3)*(zeta(2) - psi(1,n+3)))

%o [A130033(n) for n in range(31)] # _G. C. Greubel_, Feb 10 2024

%Y Cf. A010790 (m=1 column unsigned), A084915 (m=2 column unsigned).

%Y Cf. A129467.

%K sign,easy

%O 0,2

%A _Wolfdieter Lang_, May 04 2007