

A130036


Denominators of partial sums of a series for the inverse of the arithmeticgeometric mean (agM) of 1 and sqrt(3)/2.


3



1, 16, 1024, 16384, 4194304, 67108864, 4294967296, 68719476736, 70368744177664, 1125899906842624, 72057594037927936, 1152921504606846976, 295147905179352825856, 4722366482869645213696, 302231454903657293676544
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

See the references and the W. Lang link under A130035.
Also denominators of partial sums of a series for the inverse of the arithmeticgeometric mean (agM) of 1 and 1/2. For the numerators and the formula see A130037. Proof of the coincidence: The prefactor of each term of the sum (first formula in A130037) is binomial(2*n,n)^2, a natural number and 3 will never divide the even denominators.


LINKS

Table of n, a(n) for n=0..14.


FORMULA

a(n) = denom(sum((((2*j)!/(j!^2))^2)*(1/2^(6*j)),j=0..n)), n>=0.


CROSSREFS

Sequence in context: A159683 A197104 A067490 * A013735 A180376 A162008
Adjacent sequences: A130033 A130034 A130035 * A130037 A130038 A130039


KEYWORD

nonn,frac,easy


AUTHOR

Wolfdieter Lang Jun 01 2007


STATUS

approved



