login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130039
Numerators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of 2/sqrt(5) and 1.
1
1, 21, 1689, 6761, 432753, 216380469, 17310490881, 346210001661, 88629768707061, 70903816147601, 709038163609433721, 14180763279964210461, 4537844250045576077041, 18151377000520343309289
OFFSET
0,2
COMMENTS
The denominators are found in A130040.
The rationals r(n)=a(n)/A130040(n) (in lowest terms) converge for n->infinity to 1/agM(1,2/sqrt(5)). 2/sqrt(5)= (2/5)*(-1 + 2*phi) approx. 0.894 with the golden mean phi.
1/agM(1,2/sqrt(5)) approx. 1.056549198 multiplies 2*Pi*sqrt(l/g) to give the period T of a (mathematical) pendulum on a massless stiff wire of length l with maximal deflection angle phi(0) of approx. 53.13 degrees from the downward vertical. The gravitational acceleration on the earth's surface is g approx. 9.80665 m/s^2. phi(0)= 2*arcsin(1/sqrt(5)).
1/agM(1,2/sqrt(5))=(2/Pi)*K(1/5); complete elliptic integral of the first kind (see the Abramowitz-Stegun reference). K(1/5)=F(1/sqrt(5),Pi/2) in the Cox reference.
REFERENCES
D. A. Cox, The arithmetic-geometric mean of Gauss, in L. Berggren, J, Borwein, P. Borwein, Pi: A Source Book, Springer, 1997, pp. 481-536. eqs.(1.8) and (1.9).
L. D. Landau and E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band I, Mechanik, p. 30.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 591, 17.3.11.
D. A. Cox, The arithmetic-geometric mean of Gauss, L'Enseignement Mathématique, 30 (1984), 275-330.
Wolfdieter Lang, Rationals and limit.
FORMULA
a(n) = numer(sum((((2*j)!/(j!^2))^2) *((1/(5*2^4))^j),j=0..n)), n>=0.
a(n) = numer(1+sum(((2*j-1)!!/(2*j)!!)^2*(1/5)^j,j=1..n)), n>=0, with the double factorials A001147 and A000165.
CROSSREFS
Cf. A130037/A130036 rationals for deflection angle of 120 degrees.
Sequence in context: A202800 A203361 A192843 * A221033 A221497 A155740
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jun 01 2007
STATUS
approved