login
A130037
Numerators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of 1/2 and 1.
3
1, 19, 1297, 21427, 5584537, 90317059, 5819191945, 93509568787, 96025484363113, 1539315795453883, 98642187446349841, 1579652412024652483, 404633901283356405409, 6476837137305655553419, 414637849146342799444441
OFFSET
0,2
COMMENTS
1/agM(1,1/2) approx. 1.372880501 multiplies 2*Pi*sqrt(l/g) to give the period T of a (mathematical) pendulum on a massless stiff wire of length l with maximal deflection of 120 degrees from the downward vertical. The gravitational acceleration on the earth's surface is g approx. 9.80665 m/s^2.
The denominators coincide with A130036.
The rationals r(n) = a(n)/A130036(n) (in lowest terms) converge for n->infinity to 1/agM(1,1/2).
1/agM(1,1/2) = (2/Pi)*K(3/4); complete elliptic integral of the first kind (see the Abramowitz-Stegun reference). K(3/4) = F(sqrt(3)/2,Pi/2) in the Cox reference.
REFERENCES
D. A. Cox, The arithmetic-geometric mean of Gauss, in L. Berggren, J, Borwein, P. Borwein, Pi: A Source Book, Springer, 1997, pp. 481-536. eqs.(1.8) and (1.9).
L. D. Landau and E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band I, Mechanik, p. 30.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 591, 17.3.11.
D. A. Cox, The arithmetic-geometric mean of Gauss, L'Enseignement Mathématique, 30 (1984), 275-330.
Wolfdieter Lang, Rationals and limit
FORMULA
a(n) = numerator(Sum_{j=0..n} ((2*j)!/(j!^2))^2*((3/2^6)^j)), n >= 0.
a(n) = numerator(1 + Sum_{j=1..n} ((2*j-1)!!/(2*j)!!)^2*(3/4)^j), n >= 0, with the double factorials A001147 and A000165.
CROSSREFS
Cf. A130035/A130036 rationals for deflection angle of 60 degrees.
Sequence in context: A253127 A078955 A107673 * A047910 A357230 A237429
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jun 01 2007
STATUS
approved