login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of 1/2 and 1.
3

%I #29 Jan 07 2024 08:16:23

%S 1,19,1297,21427,5584537,90317059,5819191945,93509568787,

%T 96025484363113,1539315795453883,98642187446349841,

%U 1579652412024652483,404633901283356405409,6476837137305655553419,414637849146342799444441

%N Numerators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of 1/2 and 1.

%C 1/agM(1,1/2) approx. 1.372880501 multiplies 2*Pi*sqrt(l/g) to give the period T of a (mathematical) pendulum on a massless stiff wire of length l with maximal deflection of 120 degrees from the downward vertical. The gravitational acceleration on the earth's surface is g approx. 9.80665 m/s^2.

%C The denominators coincide with A130036.

%C The rationals r(n) = a(n)/A130036(n) (in lowest terms) converge for n->infinity to 1/agM(1,1/2).

%C 1/agM(1,1/2) = (2/Pi)*K(3/4); complete elliptic integral of the first kind (see the Abramowitz-Stegun reference). K(3/4) = F(sqrt(3)/2,Pi/2) in the Cox reference.

%D D. A. Cox, The arithmetic-geometric mean of Gauss, in L. Berggren, J, Borwein, P. Borwein, Pi: A Source Book, Springer, 1997, pp. 481-536. eqs.(1.8) and (1.9).

%D L. D. Landau and E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band I, Mechanik, p. 30.

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 591, 17.3.11.

%H D. A. Cox, <a href="https://doi.org/10.5169/seals-53831">The arithmetic-geometric mean of Gauss</a>, L'Enseignement Mathématique, 30 (1984), 275-330.

%H Wolfdieter Lang, <a href="/A130037/a130037.txt">Rationals and limit</a>

%F a(n) = numerator(Sum_{j=0..n} ((2*j)!/(j!^2))^2*((3/2^6)^j)), n >= 0.

%F a(n) = numerator(1 + Sum_{j=1..n} ((2*j-1)!!/(2*j)!!)^2*(3/4)^j), n >= 0, with the double factorials A001147 and A000165.

%Y Cf. A130035/A130036 rationals for deflection angle of 60 degrees.

%K nonn,frac,easy

%O 0,2

%A _Wolfdieter Lang_, Jun 01 2007