login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130034
Denominators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of 1 and sqrt(2)/2.
3
1, 8, 256, 2048, 262144, 2097152, 67108864, 536870912, 274877906944, 2199023255552, 70368744177664, 562949953421312, 72057594037927936, 576460752303423488, 18446744073709551616, 147573952589676412928
OFFSET
0,2
COMMENTS
See the references and the W. Lang link under A129934.
LINKS
FORMULA
a(n) = denom(sum((((2*j)!/(j!^2))^2)*(1/2^(5*j)),j=0..n)), n>=0.
MATHEMATICA
Denominator[Table[Sum[(((2*k)!/(k!^2))^2)*(1/2^(5*k)), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Aug 17 2018 *)
PROG
(PARI) for(n=0, 50, print1(denominator(sum(k=0, n, (((2*k)!/(k!^2))^2)*(1/2^(5*k)))), ", ")) \\ G. C. Greubel, Aug 17 2018
CROSSREFS
Sequence in context: A300176 A372670 A291850 * A128787 A013824 A010044
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang Jun 01 2007
STATUS
approved