login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130032
Row sums of unsigned triangle A129467.
7
1, 1, 3, 21, 273, 5733, 177723, 7642089, 435599073, 31798732329, 2893684641939, 321198995255229, 42719466368945457, 6706956219924436749, 1227372988246171925067, 258975700519942276189137, 62413143825306088561582017, 17038788264308562177311890641
OFFSET
0,3
LINKS
M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
FORMULA
a(n) = Sum_{m=0..n} |A129467(n,m)| for n >= 0.
a(n) = Sum_{j=0..n-1} |A130559(n-1, j)|, n >= 1.
For n > 0, a(n) = n! * Product_{k=1..n} [Gamma(k + 1/k)/Gamma(k - 1 + 1/k)]. - Gerald McGarvey, Nov 05 2007
a(n) = Product_{k=0..n} (k^2 - k + 1). - Gary Detlefs, Mar 04 2012
a(n) ~ c*n!*(n-1)! for c = Product_{k>=1} (1+1/(k^2+k)) = 2.428189792... [Charles R Greathouse IV, Mar 04 2012], c = cosh(sqrt(3)*Pi/2)/Pi. - Vaclav Kotesovec, Aug 24 2016
G.f.: 1 + x + 3*x^2/(Q(0)-3*x), where Q(k) = 1 + x*(k^2+3*k+3) - x*(k^2+5*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 15 2013
MATHEMATICA
Round@Table[Cosh[Sqrt[3] Pi/2] Gamma[n + 1/2 + I Sqrt[3]/2] Gamma[n + 1/2 - I Sqrt[3]/2]/Pi, {n, 0, 20}] (* Vladimir Reshetnikov, Aug 23 2016 *)
Product[k^2-k+1, {k, 0, Range[0, 30]}] (* G. C. Greubel, Feb 10 2024 *)
PROG
(PARI) a(n)=prod(k=1, n, k^2-k+1) \\ Charles R Greathouse IV, Mar 04 2012
(Magma) [1] cat [n le 1 select 1 else (n^2-n+1)*Self(n-1): n in [1..30]]; // G. C. Greubel, Feb 10 2024
(SageMath)
def A130032(n): return 1 if n<2 else (n^2-n+1)*A130032(n-1)
[A130032(n) for n in range(31)] # G. C. Greubel, Feb 10 2024
CROSSREFS
Cf. A130031 (signed row sums), A130559 (unsigned row sums).
Sequence in context: A227820 A336809 A066206 * A174967 A126461 A370741
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 04 2007
EXTENSIONS
Definition corrected by Wolfdieter Lang, Jun 04 2010
STATUS
approved