login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130032 Row sums of unsigned triangle A129467. 5
1, 1, 3, 21, 273, 5733, 177723, 7642089, 435599073, 31798732329, 2893684641939, 321198995255229, 42719466368945457, 6706956219924436749, 1227372988246171925067, 258975700519942276189137, 62413143825306088561582017, 17038788264308562177311890641 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.

FORMULA

a(n) = sum(|A129467(n,m)|, m=0..n), n>=0.

For n > 0, a(n) = n! * Product_{k=1..n}[Gamma(k + 1/k)/Gamma(k - 1 + 1/k)]. - Gerald McGarvey, Nov 05 2007

a(n) = product(k^2-k+1,k=0..n). - Gary Detlefs, Mar 04 2012

a(n) ~ c n! (n-1)! for c = prod(k>=1, 1+1/(k^2+k)) = 2.428189792... [Charles R Greathouse IV, Mar 04 2012], c = cosh(sqrt(3)*Pi/2)/Pi. - Vaclav Kotesovec, Aug 24 2016

G.f.: 1+x + 3*x^2/(Q(0)-3*x), where Q(k) = 1 + x*(k^2+3*k+3) - x*(k^2+5*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 15 2013

MATHEMATICA

Round@Table[Cosh[Sqrt[3] Pi/2] Gamma[n + 1/2 + I Sqrt[3]/2] Gamma[n + 1/2 - I Sqrt[3]/2]/Pi, {n, 0, 20}] (* Vladimir Reshetnikov, Aug 23 2016 *)

PROG

(PARI) a(n)=prod(k=1, n, k^2-k+1) \\ Charles R Greathouse IV, Mar 04 2012

CROSSREFS

Cf. A130031 (signed row sums).

a(n+1), n>=0, also row sums of unsigned triangle A130559.

Sequence in context: A227820 A336809 A066206 * A174967 A126461 A000681

Adjacent sequences: A130029 A130030 A130031 * A130033 A130034 A130035

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang May 04 2007, Jun 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 19:35 EDT 2023. Contains 361410 sequences. (Running on oeis4.)