login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130031
Row sums of triangle A129467.
6
1, 1, -1, 5, -55, 1045, -30305, 1242505, -68337775, 4851982025, -431826400225, 47069077624525, -6166049168812775, 955737621165980125, -172988509431042402625, 36154598471087862148625, -8640949034589999053521375, 2341697188373889743504292625
OFFSET
0,4
COMMENTS
See the M. Bruschi et al. reference given in A129467.
LINKS
FORMULA
a(n) = Sum_{j=0..n} A129467(n,j), n >= 0.
a(n) = Sum_{j=0..n-1} A130559(n, j), n>= 1.
From Vaclav Kotesovec, Aug 24 2016: (Start)
a(n) = (-1)^n*Product_{k=1..n} (k^2 - k - 1).
a(n) ~ 2*(-1)^n * cos(sqrt(5)*Pi/2) * n^(2*n) / exp(2*n). (End)
a(n) + (n^2-n-1)*a(n-1) = 0. - R. J. Mathar, Jan 21 2018
MATHEMATICA
Table[(-1)^n*Product[k^2-k-1, {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 24 2016 *)
Table[FullSimplify[(-1)^n * Cos[Sqrt[5]*Pi/2] * Gamma[n+(Sqrt[5]+1)/2] * Gamma[n-(Sqrt[5]-1)/2]/Pi], {n, 0, 20}] (* Vaclav Kotesovec, Aug 24 2016 *)
PROG
(Magma) [1] cat [n le 1 select 1 else -(n^2-n-1)*Self(n-1): n in [1..30]]; // G. C. Greubel, Feb 10 2024
(SageMath)
def A130031(n): return 1 if n<2 else -(n^2-n-1)*A130031(n-1)
[A130031(n) for n in range(31)] # G. C. Greubel, Feb 10 2024
CROSSREFS
Sequence in context: A373500 A140049 A300589 * A336289 A119399 A177557
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, May 04 2007
STATUS
approved