login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A129467.
6

%I #14 Feb 10 2024 02:59:54

%S 1,1,-1,5,-55,1045,-30305,1242505,-68337775,4851982025,-431826400225,

%T 47069077624525,-6166049168812775,955737621165980125,

%U -172988509431042402625,36154598471087862148625,-8640949034589999053521375,2341697188373889743504292625

%N Row sums of triangle A129467.

%C See the M. Bruschi et al. reference given in A129467.

%H G. C. Greubel, <a href="/A130031/b130031.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = Sum_{j=0..n} A129467(n,j), n >= 0.

%F a(n) = Sum_{j=0..n-1} A130559(n, j), n>= 1.

%F From _Vaclav Kotesovec_, Aug 24 2016: (Start)

%F a(n) = (-1)^n*Product_{k=1..n} (k^2 - k - 1).

%F a(n) ~ 2*(-1)^n * cos(sqrt(5)*Pi/2) * n^(2*n) / exp(2*n). (End)

%F a(n) + (n^2-n-1)*a(n-1) = 0. - _R. J. Mathar_, Jan 21 2018

%t Table[(-1)^n*Product[k^2-k-1, {k, 1, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Aug 24 2016 *)

%t Table[FullSimplify[(-1)^n * Cos[Sqrt[5]*Pi/2] * Gamma[n+(Sqrt[5]+1)/2] * Gamma[n-(Sqrt[5]-1)/2]/Pi], {n, 0, 20}] (* _Vaclav Kotesovec_, Aug 24 2016 *)

%o (Magma) [1] cat [n le 1 select 1 else -(n^2-n-1)*Self(n-1): n in [1..30]]; // _G. C. Greubel_, Feb 10 2024

%o (SageMath)

%o def A130031(n): return 1 if n<2 else -(n^2-n-1)*A130031(n-1)

%o [A130031(n) for n in range(31)] # _G. C. Greubel_, Feb 10 2024

%Y Cf. A129467, A130559.

%K sign,easy

%O 0,4

%A _Wolfdieter Lang_, May 04 2007