login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336289 a(0) = 1; a(n) = n! * Sum_{k=1..n} binomial(n-1,k-1) * (k-1)! * H(k) * a(n-k) / (n-k)!, where H(k) is the k-th harmonic number. 1
1, 1, 5, 55, 1054, 31046, 1299386, 73211510, 5338080280, 488727800664, 54865512897432, 7408400404206792, 1184230737883333680, 221121985937352261360, 47683177920267470877648, 11758982455716373002624816, 3287966057434181416523799936 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..16.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} H(n) * x^n / n).

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(log(1 - x)^2 / 2 + polylog(2,x)).

MATHEMATICA

a[0] = 1; a[n_] := a[n] = n! Sum[Binomial[n - 1, k - 1] (k - 1)! HarmonicNumber[k] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 16}]

nmax = 16; CoefficientList[Series[Exp[Sum[HarmonicNumber[k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2

nmax = 16; CoefficientList[Series[Exp[Log[1 - x]^2/2 + PolyLog[2, x]], {x, 0, nmax}], x] Range[0, nmax]!^2

CROSSREFS

Cf. A001008, A002805, A074707, A087761, A235385, A235685, A336290.

Sequence in context: A140049 A300589 A130031 * A119399 A177557 A158690

Adjacent sequences:  A336286 A336287 A336288 * A336290 A336291 A336292

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jul 16 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 10:24 EDT 2021. Contains 347642 sequences. (Running on oeis4.)