login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235685
E.g.f.: exp( Sum_{n>=1} H(n) * x^(2*n)/(2*n) ) where H(n) is the n-th harmonic number.
2
1, 1, 12, 370, 21490, 2012346, 276603096, 52410015372, 13086020092860, 4162089324641820, 1642246641208135248, 786999935144858519448, 450157417640763926225496, 302899153448396612425831800, 236824761815538353605549389600, 212892105513043495761147435785040
OFFSET
0,3
COMMENTS
Compare to: exp( Sum_{n>=1} x^(2*n)/(2*n) ) = 1/sqrt(1-x^2).
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 12*x^4/4! + 370*x^6/6! + 21490*x^8/8! +...
where
log(A(x)) = x^2/2 + (1+1/2)*x^4/4 + (1+1/2+1/3)*x^6/6 + (1+1/2+1/3+1/4)*x^8/8 + (1+1/2+1/3+1/4+1/5)*x^10/10 + (1+1/2+1/3+1/4+1/5+1/6)*x^12/12 +...
Explicitly,
log(A(x)) = x^2/2! + 9*x^4/4! + 220*x^6/6! + 10500*x^8/8! + 828576*x^10/10! + 97796160*x^12/12! + 16145775360*x^14/14! + 3554072121600*x^16/16! +...
PROG
(PARI) {H(n)=sum(k=1, n, 1/k)}
{a(n)=local(A=1); A=exp(sum(k=1, n\2+1, H(k)*x^(2*k)/(2*k))+x*O(x^n)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(2*n), ", "))
CROSSREFS
Cf. A235385.
Sequence in context: A166183 A218310 A268550 * A024298 A177112 A081021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2014
STATUS
approved