login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268550
Diagonal of 1/(1 - x - y - z - x y - x z - y z).
2
1, 12, 366, 13800, 574650, 25335072, 1159174464, 54435558672, 2606102756730, 126634810078920, 6226427808402516, 309095505195676992, 15466884541698962736, 779158533743408851200, 39476348002042199114400, 2010009672816216740255520
OFFSET
0,2
COMMENTS
Annihilating differential operator: x*(x+2)*(x+1)*(27*x^2+54*x-1)*Dx^2 + (81*x^4+324*x^3+431*x^2+214*x-2)*Dx + 24*x^3+72*x^2+72*x+24. - Gheorghe Coserea, Jul 03 2016
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..310, First 201 terms from Vaclav Kotesovec.
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
FORMULA
Conjecture: 2*n^2*(n-1)*a(n) -(n-1)*(107*n^2-107*n+24)*a(n-1) +12*(-9*n^3+27*n^2-22*n+2)*a(n-2) -3*n*(3*n-5)*(3*n-7)*a(n-3)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ sqrt(3) * (27 + 6*sqrt(21))^n / (2*Pi*n). - Vaclav Kotesovec, Jul 01 2016
G.f.: hypergeom([1/12, 5/12], [1], 1728*x^3*(x+2)^3*(27*x^2+54*x-1)/(-1+48*x+24*x^2)^3)/(1-48*x-24*x^2)^(1/4). - Gheorghe Coserea, Jul 01 2016
0 = x*(x+2)*(x+1)*(27*x^2+54*x-1)*y'' + (81*x^4+324*x^3+431*x^2+214*x-2)*y' + (24*x^3+72*x^2+72*x+24)*y, where y is g.f. - Gheorghe Coserea, Jul 03 2016
a(n) = Sum_{i = 0..n} Sum_{k = 0..n-i} Sum_{j = 0..n-k} (n+i+j+k)!/(i!*j!*k!*(n-k-i)!*(n-k-j)!*(2*k+i+j-n)!). Apply [Eger, Theorem 3] to the set of column vectors S = {[1,0,0], [0,1,0], [0,0,1], [1,1,0], [1,0,1], [0,1,1]}. - Peter Bala, Apr 28 2022
MAPLE
A268550 := proc(n)
1/(1-x-y-z-x*y-x*z-y*z) ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, n) ;
coeftayl(%, z=0, n) ;
end proc:
seq(A268550(n), n=0..20) ; # R. J. Mathar, Mar 10 2016
MATHEMATICA
gf = Hypergeometric2F1[1/12, 5/12, 1, 1728*x^3*(x + 2)^3*(27*x^2 + 54*x - 1)/(-1 + 48*x + 24*x^2)^3]/(1 - 48*x - 24*x^2)^(1/4);
CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 03 2017, after Gheorghe Coserea *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - z - x*y - x*z - y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 16; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], 1728*x^3*(x+2)^3*(27*x^2+54*x-1)/(-1+48*x+24*x^2)^3, N)/(1-48*x-24*x^2)^(1/4)) \\ Gheorghe Coserea, Jul 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 29 2016
STATUS
approved