login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268553
Diagonal of the rational function 1/((1 - u v - u w - v w) * (1 - x y - x z - y z)).
3
1, 36, 8100, 2822400, 1200622500, 572679643536, 294230074634496, 159259227403161600, 89595913068008532900, 51926300783585192250000, 30813565377466975498995600, 18639620490164944744006041600, 11456409104219869032980449440000
OFFSET
0,2
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (B.21)
FORMULA
Conjecture: n^4*a(n) -9*(3*n-1)^2*(3*n-2)^2*a(n-1) = 0. - R. J. Mathar, Mar 11 2016
From Vaclav Kotesovec, Jul 01 2016: (Start)
a(n) = (3*n)!^2 / (n!)^6.
a(n) ~ 3^(6*n+1) / (4*Pi^2*n^2).
(End)
G.f.: 4F3(1/3,1/3,2/3,2/3; 1,1,1; 729*x). Mathar's conjecture above is true. - Benedict W. J. Irwin, Oct 20 2016
From Peter Bala, Nov 11 2024: (Start)
a(n) = [x^n] F(x)^n, where F(x)^(1/36) = 1 + 7*x + 77*x^2 + 16004*x^3 + 4724082*x^4 + 1685299234*x^5 + 677278114038*x^6 + 295443291847791*x^7 + 136845776517061880*x^8 + 66356719714684604206*x^9 + 33360966330484890531781*x^10 + ... appears to have integer coefficients.
Conjecture 1. Let m be an integer. The sequence defined by u(n) = [x^n] F(x)^(m*n/36) satisfies the supercongruences u(n*p^r) === u(n*p^(r-1)) (mod p^r) for all primes p >= 5 and all positive integers n and r.
Let E(x) = exp(Sum_{n >= 1} a(n)*x^n/n). Then E(x)^(1/36) = 1 + x + 113*x^2 + 26246*x^3 + 8370174*x^4 + 3192850645*x^5 + 1366644640572*x^6 + 633922091635053*x^7 + 312001398547051724*x^8 + 160711315511105814931*x^9 + 85821749989729644162164*x^10 + ... appears to have integer coefficients.
Conjecture 2. Let m be an integer. The sequence defined by v(n) = [x^n] E(x)^(m*n/36) satisfies the supercongruences v(n*p^r) === v(n*p^(r-1)) (mod p^r) for all primes p >= 5 and all positive integers n and r. (End)
MAPLE
A268553 := proc(n)
1/(1-u*v-u*w-v*w)/(1-x*y-x*z-y*z) ;
coeftayl(%, x=0, 2*n) ;
coeftayl(%, y=0, 2*n) ;
coeftayl(%, z=0, 2*n) ;
coeftayl(%, u=0, 2*n) ;
coeftayl(%, v=0, 2*n) ;
coeftayl(%, w=0, 2*n) ;
end proc:
seq(A268553(n), n=0..40) ; # R. J. Mathar, Mar 11 2016
MATHEMATICA
Table[(3*n)!^2 / n!^6, {n, 0, 15}] (* Vaclav Kotesovec, Jul 01 2016 *)
CoefficientList[Series[HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1, 1, 1}, 729 x], {x, 0, 20}], x] (* Benedict W. J. Irwin, Oct 20 2016 *)
CROSSREFS
Cf. A268552.
Sequence in context: A013739 A203052 A054407 * A233171 A058466 A277603
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 29 2016
STATUS
approved