login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268554
Diagonal of the rational function 1/((1 - w - u v) * (1 - x y - x z - y z)).
1
1, 36, 6300, 1552320, 445945500, 139815211536, 46384755633216, 16009450307136000, 5689533506261190300, 2067982222137781950000, 765185639177176836418800, 287266309673587605560908800, 109149488451384203661831720000
OFFSET
0,2
COMMENTS
Each second element (which is zero) is skipped. - R. J. Mathar, Mar 10 2016
Annihilating differential operator: (-x^2+432*x^4)*Dx^4 + (-5*x+4320*x^3)*Dx^3 + (-4+10644*x^2)*Dx^2 + 6012*x*Dx + 288.
FORMULA
Conjecture: n^3*(2*n-1)*a(n) -6*(4*n-1)*(3*n-1)*(3*n-2)*(4*n-3)*a(n-1)=0. - R. J. Mathar, Mar 10 2016
From Vaclav Kotesovec, Jul 01 2016: (Start)
a(n) = (4*n)! * (3*n)! / ((n!)^3 * (2*n)!^2).
a(n) ~ 2^(4*n - 3/2) * 3^(3*n + 1/2) / (Pi^(3/2) * n^(3/2)).
(End)
0 = (-x^2+432*x^4)*y'''' + (-5*x+4320*x^3)*y''' + (-4+10644*x^2)*y'' + 6012*x*y' + 288*y, where y = 1 + 36*x^2 + 6300*x^4 + ... is the g.f. - Gheorghe Coserea, Jul 03 2016
From Peter Bala, Oct 16 2024: (Start)
a(n) = 4 * Sum_{k = 0..2*n-1} (-1)^(n+k) * binomial(2*n-1, k) * binomial(4*n+k-1, k) * A108625(2*n, 2*n-k) for n >= 1 (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). Cf. A002897.
a(n) = binomial(4*n, 2*n)*binomial(3*n, n)*binomial(2*n, n).
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k (apply Meštrović, Section 6, equation 39).
a(n) = [x^(2*n)] (1 + x)^(4*n) * [x^n] (1 + x)^(3*n) * [x^n] (1 + x)^(2*n) = [x^n] F(x)^(36*n), where F(x) = 1 + x + 52*x^2 + 6919*x^3 + 1266837*x^4 + 275133604*x^5 + 66468858333*x^6 + 17272069128056*x^7 + 4732687104502730*x^8 + 1350192483617697301*x^9 + 397617338885817524186*x^10 + ... appears to have integer coefficients (checked up to O(x^500)).
Let E(x) = exp(Sum_{n >= 1} (1/36) *a(n)*x^n/n). Then E(x) = 1 + x + 88*x^2 + 14461*x^3 + 3115089*x^4 + 781116715*x^5 + 215898182457*x^6 + 63857605571783*x^7 + 19853845202113934*x^8 + 6413541401057933731*x^9 + 2135530251738770328084*x^10 + ... appears to have integer coefficients (checked up to O(x^500)).
a(n) = 36 * [x^n] ( x/series_reversion(E(x)) )^n.
For integer r and positive integer s, define sequences {u(n) : n >= 0} and {v(n) : n >= 0} by setting u(n) = [x^(s*n)] F(x)^(r*n) and v(n) = [x^(s*n)] E(x)^(r*n). We conjecture that both u(n) and v(n) satisfy the above supercongruences. (End)
MAPLE
A268554 := proc(n)
1/(1-w-u*v)/(1-x*y-x*z-y*z) ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, n) ;
coeftayl(%, z=0, n) ;
coeftayl(%, u=0, n) ;
coeftayl(%, v=0, n) ;
coeftayl(%, w=0, n) ;
end proc:
seq(A268554(2*n), n=0..40) ; # R. J. Mathar, Mar 10 2016
MATHEMATICA
Table[(4*n)!*(3*n)!/((n!)^3*(2*n)!^2), {n, 0, 15}] (* Vaclav Kotesovec, Jul 01 2016 *)
PROG
(PARI)
my(x1='x1, x2='x2, x3='x3, y1='y1, y2='y2, y3='y3);
R = 1/((1 - y1 - y2*y3) * (1 - x1*x2 - x1*x3 - x2*x3));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(11, R, [x1, x2, x3, y1, y2, y3]) \\ Gheorghe Coserea, Jun 30 2016
CROSSREFS
Sequence in context: A222336 A291975 A307351 * A326999 A068272 A068284
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 29 2016
STATUS
approved