login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291975
a(n) = (4*n)! * [z^(4*n)] exp((cos(z) + cosh(z))/2 - 1).
12
1, 1, 36, 6271, 3086331, 3309362716, 6626013560301, 22360251390209461, 118214069460929849196, 926848347928901638652131, 10326354052861964007954596391, 157987763647812764532709527137476, 3227443522308474152275617569919520761
OFFSET
0,3
COMMENTS
Row sums of A291452.
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(4*n-1,4*k-1) * a(n-k). - Ilya Gutkovskiy, Jan 21 2020
MAPLE
A291975 := proc(n) exp((cos(z) + cosh(z))/2 - 1):
(4*n)!*coeff(series(%, z, 4*(n+1)), z, 4*n) end:
seq(A291975(n), n=0..12);
MATHEMATICA
P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]];
a[n_] := Module[{cl = CoefficientList[P[4, n], x]}, Sum[cl[[k + 1]]/k!, {k, 0, n}]];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jul 23 2019, after Peter Luschny in A291452 *)
PROG
(PARI) seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(4*n-1, 4*k-1) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
CROSSREFS
Cf. A291452.
Sequence in context: A184135 A275050 A222336 * A307351 A268554 A326999
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 07 2017
STATUS
approved