login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291973
a(n) = (3*n)! * [z^(3*n)] exp(exp(z)/3 + 2*exp(-z/2)*cos(z*sqrt(3)/2)/3 - 1).
9
1, 1, 11, 365, 25323, 3068521, 583027547, 161601254725, 62042488237755, 31728742163212641, 20963751508027371691, 17461136553331587079965, 17967906090023681913528523, 22459900935806853610377326041, 33617974358392980795259947648187, 59515082206147526028817472280664565
OFFSET
0,3
COMMENTS
Row sums of A291451.
The number of set partitions of {1,2,...,3n} where the size of every block is a multiple of 3. - Per W. Alexandersson, Jun 20 2024
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(3*n-1,3*k-1) * a(n-k). - Ilya Gutkovskiy, Jan 21 2020
EXAMPLE
For n=2, there are a(2)=11 partitions of {1,2,...,6} with every block size a multiple of 3: 123456, 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235 and 156|234. - Per W. Alexandersson, Jun 20 2024
MAPLE
A291973 := proc(n) exp(exp(z)/3+2*exp(-z/2)*cos(z*sqrt(3)/2)/3-1):
(3*n)!*coeff(series(%, z, 3*(n+1)), z, 3*n) end:
seq(A291973(n), n=0..15);
MATHEMATICA
P[m_, n_] := P[m, n] = If[n == 0, 1, Sum[Binomial[m*n, m*k]*P[m, n - k]*x, {k, 1, n}]];
a[n_] := Module[{cl = CoefficientList[P[3, n], x]}, Sum[cl[[k + 1]]/k!, {k, 0, n}]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 23 2019, after Peter Luschny in A291451 *)
PROG
(PARI) seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[1+n]=sum(k=1, n, binomial(3*n-1, 3*k-1) * a[1+n-k])); a} \\ Andrew Howroyd, Jan 21 2020
CROSSREFS
Cf. A291451.
Sequence in context: A257227 A176474 A000464 * A024149 A353934 A333466
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 07 2017
STATUS
approved