login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291974
a(n) = (3*n)! * [z^(3*n)] exp(-(exp(z)/3 + 2*exp(-z/2)*cos(z*sqrt(3)/2)/3 - 1)).
4
1, -1, 9, -197, 6841, -254801, -3000807, 3691567683, -717149457463, -3166484321001, 70729161470807849, -27375562310313650357, -6307300288015827588199, 14726712291264935798753279, -4956785715421801286491780487, -9984523503726123391084330853037
OFFSET
0,3
COMMENTS
Alternating row sums of A291451.
LINKS
MAPLE
A291974 := proc(n) exp(-(exp(z)/3+2*exp(-z/2)*cos(z*sqrt(3)/2)/3-1)):
(3*n)!*coeff(series(%, z, 3*(n+1)), z, 3*n) end:
seq(A291974(n), n=0..15);
# second Maple program:
b:= proc(n, t) option remember; `if`(n=0, 1-2*t, add(
b(n-3*j, 1-t)*binomial(n-1, 3*j-1), j=1..n/3))
end:
a:= n-> b(3*n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
MATHEMATICA
b[n_, t_] := b[n, t] = If[n == 0, 1-2t, Sum[b[n-3j, 1-t] * Binomial[n-1, 3j-1], {j, 1, n/3}]];
a[n_] := b[3n, 0];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 27 2023, after Alois P. Heinz *)
CROSSREFS
Cf. A291451.
Sequence in context: A244506 A274269 A250401 * A180778 A110807 A019566
KEYWORD
sign
AUTHOR
Peter Luschny, Sep 07 2017
STATUS
approved