OFFSET
1,2
COMMENTS
a(n+1), for n >= 0, is also the numerator of the partial sums of the reciprocal octagonal numbers Sum_{k=0..n} 1/((k + 1)*(3*k + 1)) with the denominators given in A294512(n) [assuming that n+1 divides A250400(n+1) to give A294512(n) for n >= 0]. - Wolfdieter Lang, Nov 01 2017
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
FORMULA
Denominator of 12*n/(Pi*sqrt(3) + 9*log(3) + 6*Psi(n+1/3) - 6*Psi(n+1)). - Robert Israel, Nov 01 2017
EXAMPLE
a(3) = 197 because the octagonal numbers A000567(n), for n = 1..3, are [1,8,21], and 3/(1/1 + 1/8 + 1/21) = 504/197.
MAPLE
f:= n -> denom(n/add(1/(k*(3*k-2)), k=1..n)):
map(f, [$1..40]); # Robert Israel, Nov 01 2017
MATHEMATICA
With[{s = Array[PolygonalNumber[8, #] &, 21]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* Michael De Vlieger, Nov 01 2017 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(n=1, #s, s[n]=denominator(harmonicmean(vector(n, k, 3*k^2-2*k)))); s
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Colin Barker, Nov 21 2014
STATUS
approved