login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3*n)! * [z^(3*n)] exp(-(exp(z)/3 + 2*exp(-z/2)*cos(z*sqrt(3)/2)/3 - 1)).
4

%I #11 Jan 27 2023 09:03:05

%S 1,-1,9,-197,6841,-254801,-3000807,3691567683,-717149457463,

%T -3166484321001,70729161470807849,-27375562310313650357,

%U -6307300288015827588199,14726712291264935798753279,-4956785715421801286491780487,-9984523503726123391084330853037

%N a(n) = (3*n)! * [z^(3*n)] exp(-(exp(z)/3 + 2*exp(-z/2)*cos(z*sqrt(3)/2)/3 - 1)).

%C Alternating row sums of A291451.

%H Alois P. Heinz, <a href="/A291974/b291974.txt">Table of n, a(n) for n = 0..205</a>

%p A291974 := proc(n) exp(-(exp(z)/3+2*exp(-z/2)*cos(z*sqrt(3)/2)/3-1)):

%p (3*n)!*coeff(series(%, z, 3*(n+1)), z, 3*n) end:

%p seq(A291974(n), n=0..15);

%p # second Maple program:

%p b:= proc(n, t) option remember; `if`(n=0, 1-2*t, add(

%p b(n-3*j, 1-t)*binomial(n-1, 3*j-1), j=1..n/3))

%p end:

%p a:= n-> b(3*n, 0):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 14 2019

%t b[n_, t_] := b[n, t] = If[n == 0, 1-2t, Sum[b[n-3j, 1-t] * Binomial[n-1, 3j-1], {j, 1, n/3}]];

%t a[n_] := b[3n, 0];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jan 27 2023, after _Alois P. Heinz_ *)

%Y Cf. A291451.

%K sign

%O 0,3

%A _Peter Luschny_, Sep 07 2017