login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Diagonal of the rational function 1/((1 - w - u v) * (1 - x y - x z - y z)).
1

%I #33 Nov 06 2024 04:42:04

%S 1,36,6300,1552320,445945500,139815211536,46384755633216,

%T 16009450307136000,5689533506261190300,2067982222137781950000,

%U 765185639177176836418800,287266309673587605560908800,109149488451384203661831720000

%N Diagonal of the rational function 1/((1 - w - u v) * (1 - x y - x z - y z)).

%C Each second element (which is zero) is skipped. - _R. J. Mathar_, Mar 10 2016

%C Annihilating differential operator: (-x^2+432*x^4)*Dx^4 + (-5*x+4320*x^3)*Dx^3 + (-4+10644*x^2)*Dx^2 + 6012*x*Dx + 288.

%H Vaclav Kotesovec, <a href="/A268554/b268554.txt">Table of n, a(n) for n = 0..200</a>

%H A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015.

%H R. Meštrović, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.

%H Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a>

%F Conjecture: n^3*(2*n-1)*a(n) -6*(4*n-1)*(3*n-1)*(3*n-2)*(4*n-3)*a(n-1)=0. - _R. J. Mathar_, Mar 10 2016

%F From _Vaclav Kotesovec_, Jul 01 2016: (Start)

%F a(n) = (4*n)! * (3*n)! / ((n!)^3 * (2*n)!^2).

%F a(n) ~ 2^(4*n - 3/2) * 3^(3*n + 1/2) / (Pi^(3/2) * n^(3/2)).

%F (End)

%F 0 = (-x^2+432*x^4)*y'''' + (-5*x+4320*x^3)*y''' + (-4+10644*x^2)*y'' + 6012*x*y' + 288*y, where y = 1 + 36*x^2 + 6300*x^4 + ... is the g.f. - _Gheorghe Coserea_, Jul 03 2016

%F From _Peter Bala_, Oct 16 2024: (Start)

%F a(n) = 4 * Sum_{k = 0..2*n-1} (-1)^(n+k) * binomial(2*n-1, k) * binomial(4*n+k-1, k) * A108625(2*n, 2*n-k) for n >= 1 (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). Cf. A002897.

%F a(n) = binomial(4*n, 2*n)*binomial(3*n, n)*binomial(2*n, n).

%F The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k (apply Meštrović, Section 6, equation 39).

%F a(n) = [x^(2*n)] (1 + x)^(4*n) * [x^n] (1 + x)^(3*n) * [x^n] (1 + x)^(2*n) = [x^n] F(x)^(36*n), where F(x) = 1 + x + 52*x^2 + 6919*x^3 + 1266837*x^4 + 275133604*x^5 + 66468858333*x^6 + 17272069128056*x^7 + 4732687104502730*x^8 + 1350192483617697301*x^9 + 397617338885817524186*x^10 + ... appears to have integer coefficients (checked up to O(x^500)).

%F Let E(x) = exp(Sum_{n >= 1} (1/36) *a(n)*x^n/n). Then E(x) = 1 + x + 88*x^2 + 14461*x^3 + 3115089*x^4 + 781116715*x^5 + 215898182457*x^6 + 63857605571783*x^7 + 19853845202113934*x^8 + 6413541401057933731*x^9 + 2135530251738770328084*x^10 + ... appears to have integer coefficients (checked up to O(x^500)).

%F a(n) = 36 * [x^n] ( x/series_reversion(E(x)) )^n.

%F For integer r and positive integer s, define sequences {u(n) : n >= 0} and {v(n) : n >= 0} by setting u(n) = [x^(s*n)] F(x)^(r*n) and v(n) = [x^(s*n)] E(x)^(r*n). We conjecture that both u(n) and v(n) satisfy the above supercongruences. (End)

%p A268554 := proc(n)

%p 1/(1-w-u*v)/(1-x*y-x*z-y*z) ;

%p coeftayl(%,x=0,n) ;

%p coeftayl(%,y=0,n) ;

%p coeftayl(%,z=0,n) ;

%p coeftayl(%,u=0,n) ;

%p coeftayl(%,v=0,n) ;

%p coeftayl(%,w=0,n) ;

%p end proc:

%p seq(A268554(2*n),n=0..40) ; # _R. J. Mathar_, Mar 10 2016

%t Table[(4*n)!*(3*n)!/((n!)^3*(2*n)!^2), {n, 0, 15}] (* _Vaclav Kotesovec_, Jul 01 2016 *)

%o (PARI)

%o my(x1='x1, x2='x2, x3='x3, y1='y1, y2='y2, y3='y3);

%o R = 1/((1 - y1 - y2*y3) * (1 - x1*x2 - x1*x3 - x2*x3));

%o diag(n, expr, var) = {

%o my(a = vector(n));

%o for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));

%o for (k = 1, n, a[k] = expr;

%o for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));

%o return(a);

%o };

%o diag(11, R, [x1,x2,x3,y1,y2,y3]) \\ _Gheorghe Coserea_, Jun 30 2016

%Y Cf. A268545 - A268555.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 29 2016