login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268549 Diagonal of (1 - 9 x y)/((1 - 3 y - 2 x + 3 y^2 + 9 x^2 y) * (1 - u - z) * (1 - v - w)). 6
1, 12, 648, 50400, 4630500, 468087984, 50345463168, 5655718328832, 656151696743400, 78036148295820000, 9465472643689782720, 1166663950520357802240, 145719568153188579382560, 18405635030728188793200000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

"The corresponding (order-three) linear differential operator is not homomorphic to its adjoint, even with an algebraic extension." (see A. Bostan link) - Gheorghe Coserea, Aug 15 2016

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..100

A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (30).

Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"

FORMULA

a(n) = [(xyzuvw)^n] (1 - 9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 9*x^2*y) * (1 - u - z) * (1 - v - w)).

Conjecture: n^3*a(n) -12*(3*n-2)*(-1+2*n)^2*a(n-1)=0. - R. J. Mathar, Mar 11 2016

From Vaclav Kotesovec, Jul 01 2016: (Start)

a(n) = 3^(2*n) * (2*n)!^2 * Gamma(n + 1/3) / (Gamma(1/3) * (n!)^5).

a(n) ~ 12^(2*n)/(Gamma(1/3)*Pi*n^(5/3)).

(End)

From Gheorghe Coserea, Aug 16 2016: (Start)

a(n) = [(xyzuv)^n] 1/((1 - x + 3*y - 27*x*y^3 - 27*x*y^2 - 9*x*y + 3*y^2) * (1 - u - v - u*z - v*z)).

G.f.: hypergeom([1/3, 1/2, 1/2], [1, 1], 144*x).

(End)

EXAMPLE

1 + 12*x + 648*x^2 + 50400*x^3 + ...

MAPLE

A268549 := proc(n)

    (1-9*x*y)/(1-3*y-2*x+3*y^2+9*x^2*y)/(1-u-z)/(1-v-w) ;

    coeftayl(%, x=0, n) ;

    coeftayl(%, y=0, n) ;

    coeftayl(%, z=0, n) ;

    coeftayl(%, u=0, n) ;

    coeftayl(%, v=0, n) ;

    coeftayl(%, w=0, n) ;

end proc:

seq(A268549(n), n=0..40) ; # R. J. Mathar, Mar 11 2016

series(hypergeom([1/3, 1/2, 1/2], [1, 1], 144*x), x=0, 14); # Gheorghe Coserea, Aug 15 2016

MATHEMATICA

FullSimplify[Table[3^(2*n)*(2*n)!^2*Gamma[n + 1/3]/(Gamma[1/3]*(n!)^5), {n, 0, 15}]] (* Vaclav Kotesovec, Jul 01 2016 *)

CROSSREFS

Cf. A004987, A268545-A268555.

Sequence in context: A126159 A220992 A241227 * A071307 A195574 A195554

Adjacent sequences:  A268546 A268547 A268548 * A268550 A268551 A268552

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 29 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 02:53 EDT 2021. Contains 346409 sequences. (Running on oeis4.)