login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074707
exp(Sum_{n>0} x^n/n^2) = Sum_{n>=0} a(n)*x^n/n!^2.
9
1, 1, 3, 19, 214, 3846, 102206, 3795758, 188648664, 12125977944, 980768153832, 97599402813672, 11728820086206576, 1675575398007779568, 280777781273956353648, 54556438705747006028016, 12169284368165386948212096, 3088938134820388829982311808
OFFSET
0,3
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, pp. 464-466.
FORMULA
a(n)=n!^2/n*sum(k=0, n-1, a(k)/k!^2/(n-k)). a(n)/n!^2 = exp(Pi^2/6)/n^2 + O(log(n)/n^3). - Benoit Cloitre, Jan 11 2003
PROG
(PARI) a(n)=if(n<2, 1, (n-1)!^2+n!^2/n*sum(k=1, n-1, a(k)/k!^2/(n-k)))
(PARI) {a(n)=n!^2*polcoeff(exp(sum(m=1, n, x^m/m^2)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A165356 A000275 A058165 * A230317 A135749 A005647
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 04 2002
STATUS
approved