The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129934 Numerators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of sqrt(2)/2 and 1. 3
1, 9, 297, 2401, 308553, 2472393, 79169937, 633543537, 324415700169, 2595473345377, 83057280475785, 664466019342321, 85052107504546609, 680418550231378497, 21773418753366542529, 174187444016951914257 (list; graph; refs; listen; history; text; internal format)



The denominators are found in A130034.

The rationals r(n)=a(n)/A130034(n) (in lowest terms) converge for n->infinity to 1/agM(1,sqrt(2)/2). The value for sqrt(2)/2 is approx. 0.707.

1/agM(1,sqrt(2)/2) approx. 1.180340599 multiplies 2*Pi*sqrt(l/g) to give the period T of a (mathematical) pendulum with maximal deflection of 90 degrees from the downward vertical. The length of the pendulum is l and g is the gravitational acceleration on the earth's surface, approx. 9.80665 m/s^2.

1/agM(1,sqrt(2)/2)=(2/Pi)*K(1/2); complete elliptic integral of the first kind (see the Abramowitz-Stegun reference). K(1/2)=F(sqrt(2)/2,Pi/2) in the Cox reference.


D. A. Cox, The arithmetic-geometric mean of Gauss, L'Enseignement Mathématique, 30 (1984), 275-330. Also in L. Berggren, J, Borwein, P. Borwein, Pi: A Source Book, Springer,1997, pp. 481-536. See Eqs. (1.8) and (1.9).

L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band I, Mechanik, p. 30


Table of n, a(n) for n=0..15.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 591, 17.3.11.

W. Lang, Rationals and limit.


a(n) = numer( sum((((2*j)!/(j!^2))^2)*(1/2^(5*j)),j=0..n)), n>=0.

a(n) = numer(1+sum(((2*j-1)!!/(2*j)!!)^2*(1/2)^j,j=1..n)), n>=0, with the double factorials A001147 and A000165.


Rationals r(n) = [1, 9/8, 297/256, 2401/2048, 308553/262144, 2472393/2097152, ...]


Sequence in context: A086699 A027834 A175823 * A003303 A012838 A216966

Adjacent sequences:  A129931 A129932 A129933 * A129935 A129936 A129937




Wolfdieter Lang, Jun 01 2007



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 04:47 EDT 2021. Contains 346435 sequences. (Running on oeis4.)