login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129934
Numerators of partial sums of a series for the inverse of the arithmetic-geometric mean (agM) of sqrt(2)/2 and 1.
3
1, 9, 297, 2401, 308553, 2472393, 79169937, 633543537, 324415700169, 2595473345377, 83057280475785, 664466019342321, 85052107504546609, 680418550231378497, 21773418753366542529, 174187444016951914257
OFFSET
0,2
COMMENTS
The denominators are found in A130034.
The rationals r(n)=a(n)/A130034(n) (in lowest terms) converge for n->infinity to 1/agM(1,sqrt(2)/2). The value for sqrt(2)/2 is approx. 0.707.
1/agM(1,sqrt(2)/2) approx. 1.180340599 multiplies 2*Pi*sqrt(l/g) to give the period T of a (mathematical) pendulum with maximal deflection of 90 degrees from the downward vertical. The length of the pendulum is l and g is the gravitational acceleration on the earth's surface, approx. 9.80665 m/s^2.
1/agM(1,sqrt(2)/2)=(2/Pi)*K(1/2); complete elliptic integral of the first kind (see the Abramowitz-Stegun reference). K(1/2)=F(sqrt(2)/2,Pi/2) in the Cox reference.
REFERENCES
D. A. Cox, The arithmetic-geometric mean of Gauss, in L. Berggren, J, Borwein, P. Borwein, Pi: A Source Book, Springer, 1997, pp. 481-536. eqs.(1.8) and (1.9).
L. D. Landau and E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band I, Mechanik, p. 30.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 591, 17.3.11.
D. A. Cox, The arithmetic-geometric mean of Gauss, L'Enseignement Mathématique, 30 (1984), 275-330.
Wolfdieter Lang, Rationals and limit.
FORMULA
a(n) = numer( sum((((2*j)!/(j!^2))^2)*(1/2^(5*j)),j=0..n)), n>=0.
a(n) = numer(1+sum(((2*j-1)!!/(2*j)!!)^2*(1/2)^j,j=1..n)), n>=0, with the double factorials A001147 and A000165.
EXAMPLE
Rationals r(n) = [1, 9/8, 297/256, 2401/2048, 308553/262144, 2472393/2097152, ...]
CROSSREFS
Sequence in context: A086699 A027834 A175823 * A003303 A371252 A012838
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jun 01 2007
STATUS
approved