login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371252
Number of derangements of a multiset comprising n repeats of a 4-element set.
3
1, 9, 297, 13833, 748521, 44127009, 2750141241, 178218782793, 11887871843817, 810822837267729, 56289612791763297, 3964402453931011233, 282558393168537751929, 20342533966643026042641, 1477174422125162468055897, 108064155440237168218117833, 7956914294959071176435002857
OFFSET
0,2
COMMENTS
A deck has 4 suits of n cards each. The deck is shuffled and dealt into 4 hands of n cards each. A match occurs for every card in the i-th hand of suit i. a(n) is the number of ways of achieving no matches. The probability of no matches is a(n)/((4n)!/n!^4).
LINKS
S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
FORMULA
a(n) = Integral_{x=0..oo} exp(-x)*L_n(x)^4 dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).
D-finite with recurrence n^3*(2*n-1)*(5*n-6)*(10*n-13)*a(n) = (8300*n^6 - 37350*n^5 + 66698*n^4 - 60393*n^3 + 29297*n^2 - 7263*n + 738)*a(n-1) - (n-1)*(16300*n^5 - 81500*n^4 + 151553*n^3 - 123364*n^2 + 39501*n - 4338)*a(n-2) + 162*(n-2)^3*(n-1)*(5*n-1)*(10*n-3)*a(n-3) (Ekhad).
a(n) = [(w*x*y*z)^n] ((x+y+z)*(w+y+z)*(w+x+z)*(w+x+y))^n.
a(n) ~ 3^(4*n + 3) / (32 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 29 2024
EXAMPLE
There are a(13) = 20342533966643026042641 bridge deals where North, South, East and West are void in clubs, diamonds, hearts and spades, respectively.
MATHEMATICA
Table[Integrate[Exp[-x] LaguerreL[n, x]^4, {x, 0, Infinity}], {n, 0, 16}]
(* or *)
rec = n^3(2n-1)(5n-6)(10n-13) a[n] == (8300n^6-37350n^5+66698n^4-60393n^3+29297n^2-7263n+738) a[n-1] - (n-1)(16300n^5-81500n^4+151553n^3-123364n^2+39501n-4338) a[n-2] + 162(n-2)^3(n-1)(5n-1)(10n-3) a[n-3];
RecurrenceTable[{rec, a[0] == 1, a[1] == 9, a[2] == 297}, a, {n, 0, 16}]
PROG
(Python)
def A371252(n):
l = [1, 9, 297]
for k in range(3, n+1):
m1 = (((((8300*k-37350)*k+66698)*k-60393)*k+29297)*k-7263)*k+738
m2 = (k-1)*(((((16300*k-81500)*k+151553)*k-123364)*k+39501)*k-4338)
m3 = 162*(k-2)**3*(k-1)*(5*k-1)*(10*k-3)
r = (m1*l[-1] - m2*l[-2] + m3*l[-3]) // (k**3*(2*k-1)*(5*k-6)*(10*k-13))
l.append(r)
return l[n]
CROSSREFS
Column k=0 of A059068. The analogous sequence with 3 suits is A000172 and that with 2 suits is A000012.
Column k=4 of A372307.
Sequence in context: A175823 A129934 A003303 * A012838 A216966 A211077
KEYWORD
nonn
AUTHOR
Jeremy Tan, Mar 16 2024
STATUS
approved