login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371251
Number of genus 2 partitions of the set [3n] into n blocks of length 3.
2
1, 144, 6046, 149674, 2771028, 42679084, 578872364, 7153349724, 82324041285, 895669007200, 9311524010712, 93235420275816, 904560813228072, 8543205886920516, 78838778199275032, 713005588584772184, 6334935141516816267, 55407394283320881984
OFFSET
2,2
COMMENTS
Call C(p, [alpha], g) the number of partitions of the cyclically ordered set [p], of cyclic type [alpha], and of genus g (genus g Faa di Bruno coefficients of type [alpha]). The number C(3n, [3^n], g) of genus g partitions of the set [3n] into n blocks of length 3 is given by A001764 when g=0 (non-crossing partitions), by [Zuber] when g = 1 (see A371250) and g=2 (this sequence). One has C(n=6,[3^2],2) = 1, C(n=9, [3^3], 2) = 144, etc.
LINKS
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 27; preprint, arXiv:2305.01100 [math.CO], 2023. See p. 27.
Jean-Bernard Zuber, Counting partitions by genus. I. Genus 0 to 2, Enumer. Comb. Appl. 4 (2) (2024) #S2R13. See pp. 16-19; preprint, arXiv:2303.05875 [math.CO], 2023. See pp. 16-19.
FORMULA
The g.f. Z for C(3n,[3^n],2) obeys the equation [Zuber, sect 4.4.2]
Z = (x^6*(1+113*x^3*z^3+(1610*x^6-72*x^9)*z^6 - 16*x^9*(308+9*x^3)*z^9 + 34016*x^12*z^12 - 90880*x^15*z^15 + 56832*x^18*z^18))/((-1+3*x^3*z^2)*(-1+2*x^3*z^3)^11) where z = (2*sin(arcsin((3*sqrt(3)*sqrt(x^3))/2)/3))/ (sqrt(3)*sqrt(x^3)) = 1+x^3+3x^6+... is the g.f. for the sequence C(3n,[3^n],0), given by A001764. The expansion of Z starts as x^6 + 144*x^9 + 6046*x^12 + 149674*x^15 + ...
As a function of X = x^3, this g.f. can be simplified as (16*(16321 - 21668*cos(2*t) + 5054*cos(4*t) + 578*cos(6*t) - 276*cos(8*t))*sin(3*t)^4)/ (6561(1-4*sin(t)^2)^11) where t = (1/3)*arcsin((3/2)*sqrt(3*X)).
EXAMPLE
a(2) = 1.
G.f. = X^2 + 144*X^3 + 6046*X^4 + 149674*X^5 + 2771028*X^6 + ...
MATHEMATICA
Table[SeriesCoefficient[(( 16 (16321 - 21668 Cos[2 t] + 5054 Cos[4 t] + 578 Cos[6 t] - 276 Cos[8 t]) Sin[3 t]^4)/( 6561 (1 - 4 Sin[t]^2)^11) /. {t -> ArcSin[u]/3}) /. {u -> (3 Sqrt[3 X])/2}, {X, 0, p}], {p, 2, 19}]
CROSSREFS
Cf. A001764 for C(3n,[3^n],0) and A371250 for C(3n,[2^n],1).
Sequence in context: A319294 A233645 A086985 * A259318 A231744 A262783
KEYWORD
nonn
AUTHOR
Robert Coquereaux, Mar 16 2024
STATUS
approved