login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of derangements of a multiset comprising n repeats of a 4-element set.
3

%I #20 Aug 27 2024 14:58:15

%S 1,9,297,13833,748521,44127009,2750141241,178218782793,11887871843817,

%T 810822837267729,56289612791763297,3964402453931011233,

%U 282558393168537751929,20342533966643026042641,1477174422125162468055897,108064155440237168218117833,7956914294959071176435002857

%N Number of derangements of a multiset comprising n repeats of a 4-element set.

%C A deck has 4 suits of n cards each. The deck is shuffled and dealt into 4 hands of n cards each. A match occurs for every card in the i-th hand of suit i. a(n) is the number of ways of achieving no matches. The probability of no matches is a(n)/((4n)!/n!^4).

%H Jeremy Tan, <a href="/A371252/b371252.txt">Table of n, a(n) for n = 0..200</a>

%H Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, <a href="https://arxiv.org/abs/2101.10147">There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts]</a>, arXiv:2101.10147 [math.CO], 2021.

%H Shalosh B. Ekhad, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMultiDer2.txt">Terms, recurrences and asymptotics for multiset derangements</a>.

%H S. Even and J. Gillis, <a href="https://doi.org/10.1017/S0305004100052154">Derangements and Laguerre polynomials</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.

%H B. H. Margolius, <a href="http://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), pp. 107-118.

%H <a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a>

%F a(n) = Integral_{x=0..oo} exp(-x)*L_n(x)^4 dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).

%F D-finite with recurrence n^3*(2*n-1)*(5*n-6)*(10*n-13)*a(n) = (8300*n^6 - 37350*n^5 + 66698*n^4 - 60393*n^3 + 29297*n^2 - 7263*n + 738)*a(n-1) - (n-1)*(16300*n^5 - 81500*n^4 + 151553*n^3 - 123364*n^2 + 39501*n - 4338)*a(n-2) + 162*(n-2)^3*(n-1)*(5*n-1)*(10*n-3)*a(n-3) (Ekhad).

%F a(n) = [(w*x*y*z)^n] ((x+y+z)*(w+y+z)*(w+x+z)*(w+x+y))^n.

%F a(n) ~ 3^(4*n + 3) / (32 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Mar 29 2024

%e There are a(13) = 20342533966643026042641 bridge deals where North, South, East and West are void in clubs, diamonds, hearts and spades, respectively.

%t Table[Integrate[Exp[-x] LaguerreL[n, x]^4, {x, 0, Infinity}], {n, 0, 16}]

%t (* or *)

%t rec = n^3(2n-1)(5n-6)(10n-13) a[n] == (8300n^6-37350n^5+66698n^4-60393n^3+29297n^2-7263n+738) a[n-1] - (n-1)(16300n^5-81500n^4+151553n^3-123364n^2+39501n-4338) a[n-2] + 162(n-2)^3(n-1)(5n-1)(10n-3) a[n-3];

%t RecurrenceTable[{rec, a[0] == 1, a[1] == 9, a[2] == 297}, a, {n, 0, 16}]

%o (Python)

%o def A371252(n):

%o l = [1, 9, 297]

%o for k in range(3, n+1):

%o m1 = (((((8300*k-37350)*k+66698)*k-60393)*k+29297)*k-7263)*k+738

%o m2 = (k-1)*(((((16300*k-81500)*k+151553)*k-123364)*k+39501)*k-4338)

%o m3 = 162*(k-2)**3*(k-1)*(5*k-1)*(10*k-3)

%o r = (m1*l[-1] - m2*l[-2] + m3*l[-3]) // (k**3*(2*k-1)*(5*k-6)*(10*k-13))

%o l.append(r)

%o return l[n]

%Y Column k=0 of A059068. The analogous sequence with 3 suits is A000172 and that with 2 suits is A000012.

%Y Column k=4 of A372307.

%Y Cf. A008290, A059056-A059071.

%K nonn

%O 0,2

%A _Jeremy Tan_, Mar 16 2024