login
A216966
O.g.f.: 1/(1 - x/(1 - 2^3*x/(1 - 3^3*x/(1 - 4^3*x/(1 - 5^3*x/(1 - 6^3*x/(1 -...))))))), a continued fraction.
10
1, 1, 9, 297, 24273, 3976209, 1145032281, 530050022073, 369626762653857, 369614778179835681, 509880429246329788329, 940535818601273787325257, 2261104378216803649437779313, 6933711495845384616312688513329, 26630255658298074277771723491847161
OFFSET
0,3
COMMENTS
Compare to the continued fraction o.g.f. for the Euler numbers (A000364):
1/(1-x/(1-2^2*x/(1-3^2*x/(1-4^2*x/(1-5^2*x/(1-6^2*x/(1-...))))))).
From Vaclav Kotesovec, Sep 24 2020: (Start)
In general, if s>0 and g.f. = 1/(1 - x/(1 - 2^s*x/(1 - 3^s*x/(1 - 4^s*x/(1 - 5^s*x/(1 - 6^s*x/(1 -...))))))), a continued fraction, then
a(n,s) ~ c(s) * d(s)^n * (n!)^s / sqrt(n), where
d(s) = (2*s*Gamma(2/s) / Gamma(1/s)^2)^s
c(s) = sqrt(s*d(s)/(2*Pi)). (End)
FORMULA
G.f.: T(0), where T(k) = 1 - x*(k+1)^3/(x*(k+1)^3 -1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 12 2013
a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 192 * sqrt(3) * Pi^3 / Gamma(1/3)^9 = 1.450930901627203932388423902788627... and c = 12 * sqrt(2) * 3^(1/4) * Pi / Gamma(1/3)^(9/2) = sqrt(3*d/(2*Pi)) = 0.8323271443586650769764930497... - Vaclav Kotesovec, Aug 25 2017, updated Sep 23 2020
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 297*x^3 + 24273*x^4 + 3976209*x^5 +...
MAPLE
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else -(k - n - 1)^3 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..14); # Peter Luschny, Oct 02 2023
MATHEMATICA
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^3*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
PROG
(PARI) {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^3*x*CF)); polcoeff(CF, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 20 2012
STATUS
approved