login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216964
Triangle read by rows, arising in enumeration of permutations by cyclic valleys, cycles and fixed points.
1
1, 2, 6, 22, 2, 94, 26, 460, 244, 16, 2532, 2124, 384, 15420, 18536, 6092, 272, 102620, 166440, 83436, 10384, 739512, 1550864, 1082712, 247776, 7936, 5729192, 15040112, 13841928, 4864480, 441088, 47429896, 151960264, 177512632, 87003032, 14741984, 353792
OFFSET
1,2
COMMENTS
See Ma and Chow (2012) for precise definition (see Corollary 5).
LINKS
Shi-Mei Ma and Chak-On Chow, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
EXAMPLE
Triangle begins:
1
2
6
22, 2
94, 26
460, 244, 16
2532, 2124, 384
...
MATHEMATICA
rows = 12;
Reap[For[P = x*y; n = 1; Sow[{1}], n < rows, n++, P = (n*q + x*y)*P + 2*q*(1-q)*D[P, q] + 2*x*(1-q)*D[P, x] + (1-2*y+q*y)*D[P, y] // Simplify; Sow[CoefficientList[P /. {x -> 1, y -> 1}, q]]]][[2, 1]] // Flatten (* Jean-François Alcover, Sep 23 2018, from PARI *)
PROG
(PARI) tabf(m) = {P = x*y; for (n=1, m, M = subst(P, x, 1); M = subst(M, y, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = (n*q+x*y)*P + 2*q*(1-q)*deriv(P, q)+ 2*x*(1-q)*deriv(P, x)+ (1-2*y+q*y)*deriv(P, y); ); } \\ Michel Marcus, Feb 08 2013
CROSSREFS
First column is A187251.
Sequence in context: A263486 A182544 A216120 * A187250 A129534 A216719
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 27 2012
EXTENSIONS
More terms from Michel Marcus, Feb 08 2013
STATUS
approved