login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129534
Triangle read by rows: T(n,k) = number of permutations p of 1,...,n, with min(|p(i)-p(i-1)|, i=2..n) = k (n>=2, k>=1).
4
2, 6, 22, 2, 106, 14, 630, 88, 2, 4394, 614, 32, 35078, 4874, 366, 2, 315258, 43638, 3912, 72, 3149494, 435002, 42808, 1494, 2, 34620010, 4775184, 496222, 25224, 160, 415222566, 57214716, 6164470, 393792, 6054, 2, 5395737242, 742861262, 82190752, 6070408, 160784, 352
OFFSET
2,1
COMMENTS
Row n has floor(n/2) terms. Row sums are the factorial numbers (A000142). T(n,1) = A129535(n). Sum(T(n,k), k>=2) = A002464(n). If, in the definition, min is replaced by max, then one obtains A064482.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.40.
LINKS
EXAMPLE
T(4,2) = 2 because we have 3142 and 2413.
Triangle starts:
2;
6;
22, 2;
106, 14;
630, 88, 2;
4394, 614, 32;
...
MAPLE
k:=3: with(combinat): a:=proc(n) local P, ct, i: P:=permute(n): ct:=0: for i from 1 to n! do if min(seq(abs(P[i][j]-P[i][j-1]), j=2..n))=k then ct:=ct+1 else ct:=ct: fi: od: ct: end: seq(a(n), n=2..8); # yields the first 7 entries in any specified column k
PROG
(C++) #include <iostream> #include <vector> #include <algorithm> using namespace std; inline int k(const vector<int> & s) { const int n = s.size() ; int kmin = n+1 ; for(int i=1; i<n; i++) { const int thisdiff = abs(s[i]-s[i-1]) ; if ( thisdiff < kmin) kmin = thisdiff ; } return kmin ; } int main(int argc, char *argv[]) { for(int n=2 ;; n++) { vector<int> s; for(int i=1; i<=n; i++) s.push_back(i) ; vector<unsigned long long > resul(n); do { resul[k(s)]++ ; } while( next_permutation(s.begin(), s.end()) ) ; for(int i=1; i<=n/2; i++) cout << resul[i] << ", " ; cout << endl ; } return 0 ; } - R. J. Mathar, Oct 11 2007
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 05 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 11 2007
STATUS
approved