The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002464 Hertzsprung's problem: ways to arrange n non-attacking kings on an n X n board, with 1 in each row and column. Also number of permutations of length n without rising or falling successions. (Formerly M2070 N0818) 40
 1, 1, 0, 0, 2, 14, 90, 646, 5242, 47622, 479306, 5296790, 63779034, 831283558, 11661506218, 175203184374, 2806878055610, 47767457130566, 860568917787402, 16362838542699862, 327460573946510746, 6880329406055690790, 151436547414562736234, 3484423186862152966838 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Permutations of 12...n such that none of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1). This sequence is also the solution to the 'toast problem' devised by my house-mates and me as maths undergraduates some 27 years ago: Given a toast rack with n slots, how many ways can the slices be removed so that no two consecutive slices are removed from adjacent slots? - David Jones (david.jones(AT)zetnet.co.uk), Oct 24 2003 This sequence was also derived by the late D. P. Robbins. - David Callan, Nov 04 2003 Another interpretation: number of permutations of n containing exactly n different patterns of size n-1. - Olivier Gérard, Nov 05 2007 Number of directed Hamiltonian paths in the complement of the n-path graph P_n. - Andrew Howroyd, Mar 16 2016 There is an obvious connection between the two descriptions of the sequence: Replace the chessboard with a n X n zero-matrix and each king with "1". This matrix will transform the vector (1,2,..,n) into a permutation such that adjacent components do not differ by 1. The reverse is also true: Any such transformation is a solution of the king problem. - Gerhard Kirchner, Feb 10 2017 REFERENCES W. Ahrens, Mathematische Unterhaltungen und Spiele. Teubner, Leipzig, Vol. 1, 3rd ed., 1921; Vol. 2, 2nd ed., 1918. See Vol. 1, p. 271. F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263. P. Poulet, Reply to Query 4750, Permutations, L'Intermédiaire des Mathématiciens, 26 (1919), 117-121. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.40. LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..500 M. Abramson and W. O. J. Moser, Permutations without rising or falling w-sequences, Ann. Math. Stat., 38 (1967), 1245-1254. W. Ahrens, Mathematische Unterhaltungen und Spiele, Leipzig: B. G. Teubner, 1901. Eli Bagno, Estrella Eisenberg, Shulamit Reches, Moriah Sigron, On the poset of King-Non-Attacking permutations, arXiv:1905.02387 [math.CO], 2019. Robert Brignall, Vít Jelínek, Jan Kynčl, David Marchant, Zeros of the Möbius function of permutations, arXiv:1810.05449 [math.CO], 2018. Doug Chatham, Independence and domination on shogiboard graphs, Recreational Mathematics Magazine 4.8 (2017), pp. 25-37. Doug Chatham, Reflections on the n+k dragon kings problem, Games and Puzzles, Recreational Mathematics Magazine (2018) 5.10, 39-55. P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 373 C. Homberger, Counting Fixed Length Permutation Patterns, Online Journal of Analytic Combinatorics, 7 (2012). Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014. Irving Kaplansky, The asymptotic distribution of runs of consecutive elements, Ann. Math. Statistics, 16 (1945), 200-203 Sergey Kitaev, Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], (2013). V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 625-635 O. Patashnik and P. Flajolet, Email to N. J. A. Sloane, Nov 26 1989 J. Riordan, A recurrence for permutations without rising or falling successions, Ann. Math. Statist. 36 (1965), 708-710. D. P. Robbins, The probability that neighbors remain neighbors after random rearrangements, Amer. Math. Monthly 87 (1980), 122-124. A. J. Schwenk, Letter to N. J. A. Sloane, Mar 24 1980 (with enclosure and notes) L. Shapiro and A. B. Stephens, Bootstrap percolation, the Schroeder problems and the n-kings problem, SIAM J. Discrete Math., 4 (1991), 275-280. Jason P. Smith, A Formula for the Mobius function of the Permutation Poset Based on a Topological Decomposition, arXiv preprint arXiv:1506.04406 [math.CO], 2015. Roberto Tauraso, The Dinner Table Problem: The Rectangular Case, INTEGERS: Electronic Journal of Combinatorial Number Theory, Vol. 6 (2006), #A11. See Column 3 in the table on page 3. B. E. Tenner, Mesh patterns with superfluous mesh, arXiv preprint arXiv:1302.1883 [math.CO], 2013. Eric Weisstein's World of Mathematics, Hamiltonian Path Eric Weisstein's World of Mathematics, Path Complement Graph Eric Weisstein's World of Mathematics, Permutation Multiple authors, Discussion at the Art Of Problem Solving forum FORMULA If n = 0 or 1 then a(n) = 1; if n = 2 or 3 then a(n) = 0; otherwise a(n) = (n+1)*a(n-1) - (n-2)*a(n-2) - (n-5)*a(n-3) + (n-3)*a(n-4). G.f.: Sum_{n >= 0} n!*x^n*(1-x)^n/(1+x)^n. - Philippe Flajolet G.f.: e^((1 + x)/((-1 + x) * x)) * (1 + x) * Gamma(0, (1 + x)/((-1 + x) * x))/((-1 + x) * x). - Eric W. Weisstein, May 16 2014 Let S_{n, k} = number of permutations of 12...n with exactly k rising or falling successions. Let S[n](t) = Sum_{k >= 0} S_{n, k}*t^k. Then S = 1; S = 1; S = 2*t; S = 4*t+2*t^2; for n >= 4, S[n] = (n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]. a(n) = n! + Sum_{k=1..n} (-1)^k * Sum_{t=1..k} binomial(k-1,t-1) * binomial(n-k,t) * 2^t * (n-k)!. - Max Alekseyev, Jan 29 2006 a(n) = Sum_{k=0..n} (-1)^(n-k)*k!*b(n,k), where g.f. for b(n,k) is (1-x)/(1-(1+y)*x-y*x^2), cf. A035607. - Vladeta Jovovic, Nov 24 2007 Asymptotic (M. Abramson and W. Moser, 1966): a(n)/n! ~ (1 - 2/n^2 - 10/3/n^3 - 6/n^4 - 154/15/n^5)/e^2. - Vaclav Kotesovec, Apr 19 2011 EXAMPLE a(4) = 2: 2413, 3142. a(5) = 14 corresponds to these 14 permutations of length 5: 13524, 14253, 24135, 24153, 25314, 31425, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142. MAPLE A002464 := proc(n) options remember; if n <= 1 then 1 elif n <= 3 then 0 else (n+1)*A002464(n-1)-(n-2)*A002464(n-2)-(n-5)*A002464(n-3)+(n-3)*A002464(n-4); fi; end; MATHEMATICA (* computation from the permutation class *) g[ L_ ] := Apply[ And, Map[ #>1&, L ] ]; f[ n_ ] := Length[ Select[ Permutations[ Range[ n ] ], g[ Rest[ Abs[ RotateRight[ # ]-# ] ] ]& ] ]; Table[ f[ n ], {n, 1, 8} ] (* Erich Friedman *) (* or direct computation of terms *) Table[n! + Sum[(-1)^r*(n-r)!*Sum[2^c *Binomial[r-1, c-1] *Binomial[n-r, c], {c, 1, r}], {r, 1, n-1}], {n, 1, 30}] (* Vaclav Kotesovec, Mar 28 2011 *) (* or from g.f. *) M = 30; CoefficientList[Sum[n!*x^n*(1-x)^n/(1+x)^n, {n, 0, M}] + O[x]^M, x] (* Jean-François Alcover, Jul 07 2015 *) CoefficientList[Series[Exp[(1 + x)/((-1 + x) x)] (1 + x) Gamma[0, (1 + x)/((-1 + x) x)]/((-1 + x) x), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *) RecurrenceTable[{a[n] == (n + 1) a[n - 1] - (n - 2) a[n - 2] - (n - 5) a[n - 3] + (n - 3) a[n - 4], a == a == 1, a == a == 0}, a, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) PROG (PARI) N = 66;  x = 'x + O('x^N); gf = sum(n=0, N, n!*(x*(1-x))^n/(1+x)^n ); v = Vec(gf) /* Joerg Arndt, Apr 17 2013 */ CROSSREFS Equals 2*A001266(n) for n >= 2. A diagonal of A001100. Cf. A010028. Cf. A086852, A086853, A086854, A086855, A000130, A000349, A001267, A001268, A010028, A002493. Cf. A089222. Sequence in context: A174705 A109113 A081959 * A282051 A020063 A323561 Adjacent sequences:  A002461 A002462 A002463 * A002465 A002466 A002467 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS Merged with the old A001100, Aug 19 2003 Kaplansky reference from David Callan, Oct 29 2003 Tauraso reference from Parthasarathy Nambi, Dec 21 2006 Edited by Jon E. Schoenfield, Jan 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 00:25 EST 2020. Contains 331976 sequences. (Running on oeis4.)